Analysis of Septin Structure and Function
Septin结构与功能分析
基本信息
- 批准号:10316259
- 负责人:
- 金额:$ 39.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-26 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:ActomyosinAlzheimer&aposs DiseaseAnaphaseArchitectureBacterial InfectionsBasic ScienceBinding ProteinsBiological ModelsCell membraneCell physiologyCellsCellular StructuresComplexCytokinesisDataDaughterDefectDendritic SpinesDiffuseDiffusionElectron MicroscopyEnvironmentExcisionFilamentGenesHigher Order Chromatin StructureHumanImaging technologyInfertilityMalignant NeoplasmsMammalian CellMitoticModelingMorphogenesisMothersMutationMyosin Type IINeckNeurodegenerative DisordersOrganismParkinson DiseasePhosphorylationPhosphotransferasesPlatinumPlayProcessProtein DephosphorylationProtein KinaseProtein phosphataseProteinsPublic HealthRegulationResearchResolutionRodRoleSTK11 geneSaccharomyces cerevisiaeSaccharomycetalesSiteSpermiogenesisStructureSystemTestingTimeVisualizationYeastsanillincell motilitycilium biogenesishereditary neuropathyimaging modalityinsightlight microscopymolecular assembly/self assemblyoverexpressionscaffoldtooltumorigenesisyeast genetics
项目摘要
Project Summary/Abstract:
Septins from all organisms including yeast and humans form rod-shaped heterooligomeric complexes that
are assembled into linear filaments and other higher-order structures such as rings and hourglasses. These
structures act as a cellular scaffold and/or diffusion barrier to impact diverse cellular functions including
cytokinesis, cell migration, ciliogenesis, dendritic spine morphogenesis, spermiogenesis, and bacterial
infection. Mutations in septin genes cause hereditary neuropathy and infertility in humans. Septins are also
implicated in tumorigenesis and neurodegenerative diseases such as Alzheimer's and Parkinson's. Thus,
understanding septin structure and function is critically important not only for basic science but also for public
health. However, it remains largely unknown how septins are assembled and dynamically remodeled into
various cellular architectures to perform distinct functions in any system.
Since the initial discovery of septins in the budding yeast Saccharomyces cerevisiae, this organism has
served as a highly effective model for uncovering the general principles of septin assembly and function. By
combining the power of yeast genetics and cell synchronization with cutting-edge imaging technologies
including platinum-replica electron microscopy and super-resolution light microscopy, we have determined
the architectures of the native septin structures in budding yeast. Septins form an “early hourglass” at the
division site that consists of paired septin filaments arranged in parallel to the mother-daughter axis. This
structure matures into a “zonal transitional hourglass” in anaphase, with a septin gauze at the outer zones
and myosin-II filaments in the mid-zone. The transitional hourglass is then remodeled into a “septin double
ring” that consists of circumferential paired and single filaments. The double ring now sandwiches a
constricting actomyosin ring. Both structures act together to restrict diffusible factors at the division site
during cytokinesis. Recent evidence suggests that septins also undergo architectural remodeling from an
hourglass-shaped structure during furrow ingression to a double ring-like structure during abscission in
mammalian cells. In this application, we will: (Aim 1) determine how septin high-order assembly and stability
at the division site is controlled by a LKB1-like kinase before cytokinesis in yeast; (Aim 2) determine how
septin architectural remodeling is controlled by a RhoGEF-anillin module during cytokinesis in yeast; and
(Aim 3) determine the septin architectures and their regulation by ArhGEF18 and anillin during furrow
ingression and abscission in mammalian cells. The proposed study is expected to significantly advance our
mechanistic understanding of septin assembly, remodeling, and function across model systems.
项目概要/摘要:
来自包括酵母和人类在内的所有生物体的隔膜蛋白形成棒状异源寡聚复合物,
被组装成线状细丝和其他更高级的结构,如环和沙漏。这些
结构充当细胞支架和/或扩散屏障以影响多种细胞功能,
胞质分裂、细胞迁移、纤毛发生、树突棘形态发生、精子发生和细菌
感染Septin基因突变导致人类遗传性神经病和不育。Septins也是
与肿瘤发生和神经退行性疾病如阿尔茨海默氏症和帕金森氏症有关。因此,在本发明中,
了解septin的结构和功能不仅对基础科学至关重要,
健康然而,在很大程度上仍然不清楚septins是如何组装和动态重塑成
各种蜂窝架构以在任何系统中执行不同的功能。
自从最初在芽殖酵母酿酒酵母中发现septins以来,这种生物已经
作为一个非常有效的模型,揭示了septin组装和功能的一般原则。通过
结合酵母遗传学和细胞同步的力量与尖端成像技术
包括铂复型电子显微镜和超分辨光学显微镜,我们已经确定
芽殖酵母中的天然septin结构的构造。隔膜形成一个“早期沙漏”,
分裂位点,由成对的分隔蛋白丝平行于母女轴排列组成。这
后期结构成熟为“带状过渡沙漏”,外带为隔纱网
和肌球蛋白-II纤维在中间区域。过渡沙漏然后被改造成一个“septin双
由周向成对和单丝组成的“环”。双环现在夹着一个
收缩肌动球蛋白环。两种结构共同作用,限制分裂部位的扩散因子
在胞质分裂期间。最近的证据表明,septins也经历了建筑重塑,从一个
从犁沟侵入时的沙漏状结构转变为犁沟侵入时的双环状结构
哺乳动物细胞在这个应用中,我们将:(目的1)确定septin如何高阶组装和稳定性
在酵母胞质分裂之前,分裂位点的LKB 1样激酶控制;(目的2)确定如何
Septin结构重塑在酵母胞质分裂期间由RhoGEF-苯胺醛模块控制;和
(Aim 3)确定隔蛋白在犁沟过程中的结构以及ArhGEF 18和苯胺醛对其的调节
在哺乳动物细胞中的侵入和释放。这项拟议的研究预计将大大推进我们的
对隔蛋白组装、重塑和跨模型系统的功能的机械理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erfei Bi其他文献
Erfei Bi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erfei Bi', 18)}}的其他基金
Mechanisms of Hepatocyte Polarization and Apical Tube Formation
肝细胞极化和心尖管形成的机制
- 批准号:
10221385 - 财政年份:2021
- 资助金额:
$ 39.82万 - 项目类别:
Mechanisms of Hepatocyte Polarization and Apical Tube Formation
肝细胞极化和心尖管形成的机制
- 批准号:
10391530 - 财政年份:2021
- 资助金额:
$ 39.82万 - 项目类别:
Mechanisms of Hepatocyte Polarization and Apical Tube Formation
肝细胞极化和心尖管形成的机制
- 批准号:
10598034 - 财政年份:2021
- 资助金额:
$ 39.82万 - 项目类别:
Mechanistic Analysis of Cytokinesis in Eukaryotes
真核生物细胞分裂的机制分析
- 批准号:
9316658 - 财政年份:2015
- 资助金额:
$ 39.82万 - 项目类别:
Mechanistic Analysis of Cytokinesis in Eukaryotes
真核生物细胞分裂的机制分析
- 批准号:
9119026 - 财政年份:2015
- 资助金额:
$ 39.82万 - 项目类别:
Mechanistic Analysis of Cytokinesis in Eukaryotes
真核生物细胞分裂的机制分析
- 批准号:
10001538 - 财政年份:2015
- 资助金额:
$ 39.82万 - 项目类别:
Mechanistic Analysis of Cytokinesis in Eukaryotes
真核生物细胞分裂的机制分析
- 批准号:
10451747 - 财政年份:2015
- 资助金额:
$ 39.82万 - 项目类别:
Mechanistic Analysis of Cytokinesis in Eukaryotes
真核生物细胞分裂的机制分析
- 批准号:
10224222 - 财政年份:2015
- 资助金额:
$ 39.82万 - 项目类别: