Analysis of Septin Structure and Function
Septin结构与功能分析
基本信息
- 批准号:10316259
- 负责人:
- 金额:$ 39.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-26 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:ActomyosinAlzheimer&aposs DiseaseAnaphaseArchitectureBacterial InfectionsBasic ScienceBinding ProteinsBiological ModelsCell membraneCell physiologyCellsCellular StructuresComplexCytokinesisDataDaughterDefectDendritic SpinesDiffuseDiffusionElectron MicroscopyEnvironmentExcisionFilamentGenesHigher Order Chromatin StructureHumanImaging technologyInfertilityMalignant NeoplasmsMammalian CellMitoticModelingMorphogenesisMothersMutationMyosin Type IINeckNeurodegenerative DisordersOrganismParkinson DiseasePhosphorylationPhosphotransferasesPlatinumPlayProcessProtein DephosphorylationProtein KinaseProtein phosphataseProteinsPublic HealthRegulationResearchResolutionRodRoleSTK11 geneSaccharomyces cerevisiaeSaccharomycetalesSiteSpermiogenesisStructureSystemTestingTimeVisualizationYeastsanillincell motilitycilium biogenesishereditary neuropathyimaging modalityinsightlight microscopymolecular assembly/self assemblyoverexpressionscaffoldtooltumorigenesisyeast genetics
项目摘要
Project Summary/Abstract:
Septins from all organisms including yeast and humans form rod-shaped heterooligomeric complexes that
are assembled into linear filaments and other higher-order structures such as rings and hourglasses. These
structures act as a cellular scaffold and/or diffusion barrier to impact diverse cellular functions including
cytokinesis, cell migration, ciliogenesis, dendritic spine morphogenesis, spermiogenesis, and bacterial
infection. Mutations in septin genes cause hereditary neuropathy and infertility in humans. Septins are also
implicated in tumorigenesis and neurodegenerative diseases such as Alzheimer's and Parkinson's. Thus,
understanding septin structure and function is critically important not only for basic science but also for public
health. However, it remains largely unknown how septins are assembled and dynamically remodeled into
various cellular architectures to perform distinct functions in any system.
Since the initial discovery of septins in the budding yeast Saccharomyces cerevisiae, this organism has
served as a highly effective model for uncovering the general principles of septin assembly and function. By
combining the power of yeast genetics and cell synchronization with cutting-edge imaging technologies
including platinum-replica electron microscopy and super-resolution light microscopy, we have determined
the architectures of the native septin structures in budding yeast. Septins form an “early hourglass” at the
division site that consists of paired septin filaments arranged in parallel to the mother-daughter axis. This
structure matures into a “zonal transitional hourglass” in anaphase, with a septin gauze at the outer zones
and myosin-II filaments in the mid-zone. The transitional hourglass is then remodeled into a “septin double
ring” that consists of circumferential paired and single filaments. The double ring now sandwiches a
constricting actomyosin ring. Both structures act together to restrict diffusible factors at the division site
during cytokinesis. Recent evidence suggests that septins also undergo architectural remodeling from an
hourglass-shaped structure during furrow ingression to a double ring-like structure during abscission in
mammalian cells. In this application, we will: (Aim 1) determine how septin high-order assembly and stability
at the division site is controlled by a LKB1-like kinase before cytokinesis in yeast; (Aim 2) determine how
septin architectural remodeling is controlled by a RhoGEF-anillin module during cytokinesis in yeast; and
(Aim 3) determine the septin architectures and their regulation by ArhGEF18 and anillin during furrow
ingression and abscission in mammalian cells. The proposed study is expected to significantly advance our
mechanistic understanding of septin assembly, remodeling, and function across model systems.
项目摘要/摘要:
来自包括酵母和人类在内的所有生物的七十年
组装成线性细丝和其他高阶结构,例如环和沙漏。这些
结构充当细胞支架和/或扩散屏障,以影响多元化的细胞功能
细胞因子,细胞迁移,纤毛生成,树突状脊柱形态发生,精子生成和细菌
感染。 Septin基因的突变引起人类的遗传神经病和不育症。 9月也是
在肿瘤发生和神经退行性疾病中实施,例如阿尔茨海默氏症和帕金森氏症。那,
了解隔丁的结构和功能,不仅对基础科学至关重要,而且对公众也很重要
健康。但是,它在很大程度上尚不清楚septins如何组装并动态重塑为
各种蜂窝体系结构在任何系统中执行不同的功能。
自从酿酒酵母发芽的酵母菌中最初发现七月以来,这种生物具有
作为揭示Septin组装和功能的一般原理的高效模型。经过
将酵母遗传学和细胞同步的力量与尖端成像技术相结合
包括铂 - 替代电子显微镜和超分辨率光学显微镜,我们确定了
萌芽酵母中天然septin结构的结构。 Septins在
由与母女轴平行排列的成对的七月丝组成。这
结构在后期中成熟成“区域过渡沙漏”,在外部区域有septin纱布
和中区中的肌球蛋白-II丝。然后将过渡性沙漏重塑为“ septin double”
戒指”由圆周配对和单细丝组成。双环现在三明治a
收缩肌动蛋白环。两种结构一起起作
在细胞因子期间。最近的证据表明,Septins还从
在犁沟进入脱落期间,沙漏形结构在脱落期间
哺乳动物细胞。在此应用程序中,我们将:(目标1)确定septin高阶组装和稳定性如何
在分裂部位,在酵母中细胞因子之前由LKB1样激酶控制; (目标2)确定如何
Septin建筑重塑在酵母中细胞因子期间由Rhogef-氨基蛋白模块控制;和
(AIM 3)确定Septin架构及其对Arhgef18和Anillin期间的调节
哺乳动物细胞的浸润和脱落。拟议的研究预计将显着推动我们的
对Septin组装,重塑和功能的机械理解跨模型系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erfei Bi其他文献
Erfei Bi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erfei Bi', 18)}}的其他基金
Mechanisms of Hepatocyte Polarization and Apical Tube Formation
肝细胞极化和心尖管形成的机制
- 批准号:
10221385 - 财政年份:2021
- 资助金额:
$ 39.82万 - 项目类别:
Mechanisms of Hepatocyte Polarization and Apical Tube Formation
肝细胞极化和心尖管形成的机制
- 批准号:
10391530 - 财政年份:2021
- 资助金额:
$ 39.82万 - 项目类别:
Mechanisms of Hepatocyte Polarization and Apical Tube Formation
肝细胞极化和心尖管形成的机制
- 批准号:
10598034 - 财政年份:2021
- 资助金额:
$ 39.82万 - 项目类别:
Mechanistic Analysis of Cytokinesis in Eukaryotes
真核生物细胞分裂的机制分析
- 批准号:
9316658 - 财政年份:2015
- 资助金额:
$ 39.82万 - 项目类别:
Mechanistic Analysis of Cytokinesis in Eukaryotes
真核生物细胞分裂的机制分析
- 批准号:
9119026 - 财政年份:2015
- 资助金额:
$ 39.82万 - 项目类别:
Mechanistic Analysis of Cytokinesis in Eukaryotes
真核生物细胞分裂的机制分析
- 批准号:
10001538 - 财政年份:2015
- 资助金额:
$ 39.82万 - 项目类别:
Mechanistic Analysis of Cytokinesis in Eukaryotes
真核生物细胞分裂的机制分析
- 批准号:
10451747 - 财政年份:2015
- 资助金额:
$ 39.82万 - 项目类别:
Mechanistic Analysis of Cytokinesis in Eukaryotes
真核生物细胞分裂的机制分析
- 批准号:
10224222 - 财政年份:2015
- 资助金额:
$ 39.82万 - 项目类别:
相似海外基金
Pericyte control of capillary perfusion in the Alzheimer's disease brain
阿尔茨海默病大脑中毛细血管灌注的周细胞控制
- 批准号:
10655813 - 财政年份:2023
- 资助金额:
$ 39.82万 - 项目类别:
Molecular and Cell Biological Foundations of Proteostress-Induced Neuronal Extrusion
蛋白质应激诱导的神经元挤压的分子和细胞生物学基础
- 批准号:
10753902 - 财政年份:2023
- 资助金额:
$ 39.82万 - 项目类别:
Piezo1 in neural stem cell mechano-regulation
Piezo1 在神经干细胞机械调节中的作用
- 批准号:
10092758 - 财政年份:2020
- 资助金额:
$ 39.82万 - 项目类别:
Piezo1 in neural stem cell mechano-regulation
Piezo1 在神经干细胞机械调节中的作用
- 批准号:
9788548 - 财政年份:2018
- 资助金额:
$ 39.82万 - 项目类别:
Piezo1 in neural stem cell mechano-regulation
Piezo1 在神经干细胞力学调节中的作用
- 批准号:
10207802 - 财政年份:2018
- 资助金额:
$ 39.82万 - 项目类别: