Mechanistic Analysis of Cytokinesis in Eukaryotes
真核生物细胞分裂的机制分析
基本信息
- 批准号:9119026
- 负责人:
- 金额:$ 43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:ActomyosinAddressAnemiaAneuploidyAnimalsArchitectureBiological AssayBiologyC2 DomainCRISPR/Cas technologyCell CountCellsChitin SynthaseComplexCytokinesisDataDefectDevelopmentDiseaseElementsEnzymesEukaryotaEvolutionExperimental ModelsExtracellular MatrixFailureFilamentGenomic InstabilityHealthHomeostasisIn VitroLiposomesMalignant NeoplasmsMammalian CellMediatingMembraneMembrane FusionMicrofilamentsMicroscopyModelingMyosin ATPaseMyosin Type IINeckNeuronsOrganismPlatinumPlayPloidiesPrevalenceProcessProtein IsoformsProteinsRegulationResearchResolutionRoleSaccharomyces cerevisiaeSaccharomycetalesSarcomeresSiteStructureSystemTechnologyTestingTissuesTransglutaminasesVesicleYeastsbasecell typeconstrictiondesigngenome editinghuman diseasein vivoinnovationinnovative technologiesnovelphenomenological modelsscaffoldsuccess
项目摘要
DESCRIPTION (provided by applicant): Cytokinesis is essential for development and survival of all organisms. Defects in cytokinesis cause aneuploidy and genomic instability, and thereby contribute to serious diseases such as cancer, neuronal disorders, and anemia. Thus, mechanistic study of cytokinesis is important not only for understanding the basic principles of a fundamental process but also for designing new strategies to treat human diseases. Cytokinesis in animal and fungal cells requires concerted functions of a contractile actomyosin ring (AMR), targeted vesicle fusion, and localized extracellular matrix (ECM) remodeling. Despite extensive studies of cytokinesis over a century, the basic architecture of the AMR remains unknown in any system. It is also unclear how myosin-II localization and filament assembly are regulated during cytokinesis. Increasing evidence suggests that ECM remodeling is critical for cytokinesis not only for yeast cells but also for animal cells. However, the underlying mechanisms remain poorly understood. We propose to address these key questions in cytokinesis using both budding yeast and mammalian cells as our experimental models. In Aim 1, we will determine the AMR structure in budding yeast and then develop a quantitative model for it. This model will open new avenues to address broad questions in cytokinesis, e.g. those regarding the mechanism of ring constriction as well as those concerning the assembly, regulation, and function of the ring. We will also examine the AMR in mammalian cells to establish the degree of conservation in this core cytokinetic structure. In Aim 2, we will test our hypothesis that IQGAP functions as a dual regulator of myosin localization and filament assembly during cytokinesis in both budding yeast and mammalian cells. In Aim 3, we will test our hypothesis that the AMR-associated protein Inn1 interacts with SNAREs via its C2 domain to facilitate vesicle fusion at the division site, thereby increasing the local concentration of the cargo enzyme Chs2 (chitin synthase-II), which is subsequently activated by Cyk3 via its transglutaminase-like domain to promote septum formation (equivalent of ECM remodeling in animal cells) during cytokinesis. The proposed research is innovative, as diverse and cutting-edge technologies will be applied to generate new information and concepts regarding the core mechanisms of cytokinesis.
描述(由申请方提供):胞质分裂对所有生物体的发育和存活至关重要。胞质分裂的缺陷导致非整倍性和基因组不稳定性,从而导致严重的疾病,如癌症、神经元疾病和贫血。因此,胞质分裂的机制研究不仅对于理解一个基本过程的基本原理,而且对于设计治疗人类疾病的新策略都很重要。动物和真菌细胞的胞质分裂需要收缩性肌动球蛋白环(AMR)、靶向囊泡融合和局部细胞外基质(ECM)重塑的协同功能。尽管对胞质分裂进行了世纪的广泛研究,但AMR的基本结构在任何系统中仍然未知。目前还不清楚肌球蛋白-II的定位和丝组装过程中的胞质分裂的调节。越来越多的证据表明,ECM重塑不仅对酵母细胞而且对动物细胞的胞质分裂至关重要。然而,对潜在的机制仍然知之甚少。我们建议使用芽殖酵母和哺乳动物细胞作为我们的实验模型来解决胞质分裂中的这些关键问题。在目标1中,我们将确定芽殖酵母中AMR的结构,然后建立一个定量模型。该模型将为解决胞质分裂中的广泛问题开辟新的途径,例如,关于环收缩机制以及关于环的组装,调节和功能的问题。我们还将研究哺乳动物细胞中的AMR,以确定这一核心细胞动力学结构的保守程度。在目标2中,我们将测试我们的假设,IQGAP功能作为一个双重调节肌球蛋白定位和丝组装在胞质分裂过程中在芽殖酵母和哺乳动物细胞。在目标3中,我们将测试我们的假设,AMR相关蛋白Inn 1通过其C2结构域与SNARE相互作用,以促进分裂位点的囊泡融合,从而增加货物酶Chs 2(几丁质酶-II)的局部浓度,随后通过其转氨酶样结构域被Cyk 3激活,以促进胞质分裂期间的隔膜形成(相当于动物细胞中的ECM重塑)。拟议的研究是创新的,因为各种尖端技术将被应用于产生有关胞质分裂核心机制的新信息和概念。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erfei Bi其他文献
Erfei Bi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erfei Bi', 18)}}的其他基金
Mechanisms of Hepatocyte Polarization and Apical Tube Formation
肝细胞极化和心尖管形成的机制
- 批准号:
10221385 - 财政年份:2021
- 资助金额:
$ 43万 - 项目类别:
Mechanisms of Hepatocyte Polarization and Apical Tube Formation
肝细胞极化和心尖管形成的机制
- 批准号:
10391530 - 财政年份:2021
- 资助金额:
$ 43万 - 项目类别:
Mechanisms of Hepatocyte Polarization and Apical Tube Formation
肝细胞极化和心尖管形成的机制
- 批准号:
10598034 - 财政年份:2021
- 资助金额:
$ 43万 - 项目类别:
Mechanistic Analysis of Cytokinesis in Eukaryotes
真核生物细胞分裂的机制分析
- 批准号:
10001538 - 财政年份:2015
- 资助金额:
$ 43万 - 项目类别:
Mechanistic Analysis of Cytokinesis in Eukaryotes
真核生物细胞分裂的机制分析
- 批准号:
10451747 - 财政年份:2015
- 资助金额:
$ 43万 - 项目类别:
Mechanistic Analysis of Cytokinesis in Eukaryotes
真核生物细胞分裂的机制分析
- 批准号:
10224222 - 财政年份:2015
- 资助金额:
$ 43万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 43万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 43万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 43万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 43万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 43万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 43万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 43万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 43万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 43万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 43万 - 项目类别:
Research Grant