Enhancing the spatial control of non-invasive brain stimulation by magnetic temporal interference
通过磁时间干扰增强非侵入性脑刺激的空间控制
基本信息
- 批准号:10316652
- 负责人:
- 金额:$ 3.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2022-02-27
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAmplifiersBiochemicalBiologicalBiophysical ProcessBiophysicsBrainBrain DiseasesCharacteristicsClinical DataClinical ResearchComputer ModelsComputer softwareCustomDevicesDimensionsDiseaseDrug resistanceElectric StimulationElectrodesElectromagneticsEtiologyFDA approvedFrequenciesGoalsHeadHealthHumanImplantIndividualInvestigationInvestigative TechniquesIon ChannelMagnetic Resonance ImagingMagnetismMeasurementMeasuresMediatingMental DepressionModelingNeuronsNeurosciences ResearchPeripheral Nerve StimulationPhysicsPhysiologyPlayPre-Clinical ModelPreclinical TestingPrimatesRoleSafetySalineScalp structureShunt DeviceSideSourceStructureStudy modelsSystemTechniquesTechnologyTestingTimeTissuesTranscranial magnetic stimulationTranslationsWorkanimal databaseclinical applicationcomputer studiescomputerized toolscraniumdesignelectric fieldlensmagnetic fieldmouse modelnonhuman primatenoninvasive brain stimulationnovelpre-clinicalpreclinical studyprototyperelating to nervous systemsoftware development
项目摘要
Project Summary/Abstract
Electromagnetic brain stimulation is a safe and proven way of controlling neural activity non-invasively with no
implanted hardware or injected biochemical agents. Transcranial magnetic stimulation (TMS) is FDA approved
for treatment of drug resistant depression and obsessive compulsory disorder with a range of other clinical
applications under investigation. Its use in neuroscience research has also seen rapid expansion in recent years
due to its ability to test causality by non-invasively perturbing neural activity.
The most critical limitation of TMS is its inability to focus the stimulation depth-wise in a spatially selective manner;
the electric field (E-field) is always maximal in the superficial region, closest to the stimulating coil. This is a major
limitation given the critical role that subcortical structures play in both health and disease. Using the superposition,
or “temporal interference”, of E-fields oscillating at different frequencies to create an amplitude modulation (AM)
maximum at a given target in the subcortex has been suggested as a work-around to this problem. While the E-
fields are still strongest in the superficial region, the neurons time-lock to the AM oscillation rather than the
oscillations of the individual E-fields, yielding enhanced stimulation in the subcortical superposition zone. A
recent study demonstrated the feasibility of this concept in a mouse model using electrical stimulation delivered
via two electrode pairs at opposing sides of the skull. Although these pre-clinical animal data were very promising,
the use of scalp electrodes will be problematic for human translation due to the high conductivity ratio between
the scalp and skull tissues that shunts the current and leads to very weak E-fields inside the cranium of humans.
In this F32 project, we propose developing a temporal interference approach using magnetic stimulation (TiMS)
which could be a more translatable technique to humans than electrical stimulation. Unlike electrical stimulation,
magnetic fields efficiently pass through the human skull inducing clearly suprathreshold E-fields in the brain that
can directly depolarize neurons. Firstly, the theoretical feasibility of the proposed technique in terms of
stimulation efficiency and safety limits will be investigated by computational modeling. The theoretical results will
then be validated in a phantom head model using a low-power system usually used for MRI shimming that is
currently in place in our lab. Finally, based on these computational results and the experimental verification of
the idea, we will design, build, and validate a prototype device capable of delivering effective intracranial TiMS
by connecting custom made TMS coils to an in-house MRI gradient amplifier system. The end goal of the project
is to have a novel device prototype capable of non-invasive brain stimulation that is steerable along the depth
dimension and ready to be used in non-human primate models for pre-clinical testing and ultimately in humans.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Gustaf Wilhelm Samuelsson 其他文献
John Gustaf Wilhelm Samuelsson 的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
SBIR Phase II: Thermally-optimized power amplifiers for next-generation telecommunication and radar
SBIR 第二阶段:用于下一代电信和雷达的热优化功率放大器
- 批准号:
2335504 - 财政年份:2024
- 资助金额:
$ 3.63万 - 项目类别:
Cooperative Agreement
Interferometric and Multiband optical Parametric Amplifiers for Communications (IMPAC)
用于通信的干涉式和多频带光学参量放大器 (IMPAC)
- 批准号:
EP/X031918/1 - 财政年份:2024
- 资助金额:
$ 3.63万 - 项目类别:
Fellowship
Josephson Parametric Amplifiers using CVD graphene junctions
使用 CVD 石墨烯结的约瑟夫森参量放大器
- 批准号:
EP/Y003152/1 - 财政年份:2024
- 资助金额:
$ 3.63万 - 项目类别:
Research Grant
Semiconductor-based Terahertz Traveling Wave Amplifiers for Monolithic Integration
用于单片集成的半导体太赫兹行波放大器
- 批准号:
2329940 - 财政年份:2023
- 资助金额:
$ 3.63万 - 项目类别:
Standard Grant
OPTIME-PA: Optimal MMIC Design of E-Band Power Amplifiers for Satcom using Dedicated Measurements and Non-Linear Modelling
OPTIME-PA:使用专用测量和非线性建模的卫星通信 E 频段功率放大器的最佳 MMIC 设计
- 批准号:
10075892 - 财政年份:2023
- 资助金额:
$ 3.63万 - 项目类别:
Collaborative R&D
Optical Glass Amplifiers for High Capacity Networks
用于高容量网络的光学玻璃放大器
- 批准号:
538379-2018 - 财政年份:2022
- 资助金额:
$ 3.63万 - 项目类别:
Collaborative Research and Development Grants
Investigating the function of ZU5 domain-containing proteins as amplifiers of caspase activation
研究含有 ZU5 结构域的蛋白质作为 caspase 激活放大器的功能
- 批准号:
10681326 - 财政年份:2022
- 资助金额:
$ 3.63万 - 项目类别:
Investigating the function of ZU5 domain-containing proteins as amplifiers of caspase activation
研究含有 ZU5 结构域的蛋白质作为 caspase 激活放大器的功能
- 批准号:
10621402 - 财政年份:2022
- 资助金额:
$ 3.63万 - 项目类别:
Broadband Digital Doherty Amplifiers for Sub-6 GHz 5G wireless Applications
适用于 6 GHz 以下 5G 无线应用的宽带数字 Doherty 放大器
- 批准号:
573452-2022 - 财政年份:2022
- 资助金额:
$ 3.63万 - 项目类别:
Alliance Grants
TALENT – Tapered AmpLifiErs for quaNtum Technologies
人才 — 量子技术的锥形放大器
- 批准号:
10032436 - 财政年份:2022
- 资助金额:
$ 3.63万 - 项目类别:
Collaborative R&D