Semiconductor-based Terahertz Traveling Wave Amplifiers for Monolithic Integration
用于单片集成的半导体太赫兹行波放大器
基本信息
- 批准号:2329940
- 负责人:
- 金额:$ 37.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Monolithic integration of terahertz (THz) amplifiers can pave way to miniaturization and mobility of many terahertz systems. In this project PIs propose a new configuration of terahertz amplifiers which can use traveling-wave phenomenology to provide terahertz gain in semiconductor media. Traveling wave gain occurs due to a synchronous interaction between moving charged particles and electromagnetic waves in its vicinity. Classically, this phenomenology has provided amplification of electromagnetic waves in a large array of vacuum electron devices (e. g. vacuum-electronics based travelling wave amplifier). Notably, translation of this phenomenon into semiconductor media and its scaling to sub-millimeter dimensions is highly desirable. This is because of the possibility of obtaining similar gains and a high output power within microwave monolithic integrated circuits (MMICs). This proposal will address new computing algorithms, material optimizations and device configuration innovations to create high gain amplifier topologies in 0.1 to 3 THz range based on electron-wave dynamics in semiconductor materials. This project aims at (1) introducing efficient numerical modeling tools to unveil the underlying complex phenomenology of electron-wave interactions in semiconductor materials and (2) investigating and validating the device concepts that exploit a synchronous electron-wave interaction for a THz wave amplification. Overall, the project will broadly impact the medical, security, and wireless-communication areas, and benefit the national infrastructure of security and defense resiliency through its impact on wireless communication and imaging technology. The project further supports workforce development through training and education of one graduate student and three undergraduate students via the summer internship program. The research outcomes as well as new scientific knowledge created from this proposal will be tied to the curriculum development by the PIs at UNL.The specific scientific innovations of the project will be focused on advancements of multiphysics, multiscale numerical solvers, material and device-configuration innovations, and experimental validation of the amplifier through fabrication and measurements. To reach an optimized device PIs exploit naturally confined 2D electron gas in high electron mobility transistors (HEMTs) and in other confined electron-gas systems for creating a gain media for terahertz electromagnetic waves. This is achieved by augmentation of slow-wave structures near 2D confined media to provide electron-wave interactions and amplification of THz waves. To model this problem, the project will first address the low computational efficiency and accuracy of current multiscale multiphysics global models. Project will specifically introduce time-domain numerical solvers that are based on multi-domain use of unconditional stability for gaining time-advantage and iterative corrections to maintain the accuracy. PIs will adapt Alternate Directional Implicit (ADI) and iterative ADI algorithm for their integration into multiphysics finite different time domain method to provide up to an order more efficient numerical solver. Secondly, the project will use the proposed solvers towards developing behavioral models, material, and geometry optimizations, and thus provide first estimates of power, gain, and bandwidth through these studies. Numerical studies will be used to optimize the devices for fabrication and measurements. In this context, the study will expansively investigate electromagnetic slow-wave structures, numerically model classical and new emerging material systems, and provide novel adaptation of the device concepts such as by using 2DEG-bilayer and superlattice. To validate the device concept, cold-tests are proposed in Ka-band, and device prototyping and measurements are proposed in W-band.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
太赫兹(THz)放大器的单片集成可以为许多太赫兹系统的小型化和移动性铺平道路。在这个项目中,PI提出了一种新的太赫兹放大器配置,它可以使用行波现象提供太赫兹增益在半导体介质。行波增益是由于移动的带电粒子与其附近的电磁波之间的同步相互作用而发生的。经典上,这种现象已经在真空电子器件的大阵列中提供了电磁波的放大(例如,G.基于真空电子的行波放大器)。值得注意的是,将这种现象转化到半导体介质中并将其缩放到亚毫米尺寸是非常期望的。这是因为在微波单片集成电路(MMIC)内获得类似增益和高输出功率的可能性。该提案将解决新的计算算法,材料优化和设备配置创新,以创建基于半导体材料中的电子波动力学的0.1至3 THz范围内的高增益放大器拓扑结构。该项目旨在(1)引入有效的数值模拟工具,以揭示半导体材料中电子波相互作用的潜在复杂现象,(2)研究和验证利用同步电子波相互作用进行太赫兹波放大的器件概念。总体而言,该项目将广泛影响医疗、安全和无线通信领域,并通过对无线通信和成像技术的影响,使国家安全和国防弹性基础设施受益。该项目通过暑期实习计划培训和教育一名研究生和三名本科生,进一步支持劳动力发展。该项目的具体科学创新将集中在多物理场,多尺度数值求解器,材料和设备配置创新的进步,以及通过制造和测量放大器的实验验证。为了达到优化的器件,PI利用高电子迁移率晶体管(HEMT)和其他受限电子气系统中的自然受限2D电子气来创建用于太赫兹电磁波的增益介质。这是通过增强2D受限介质附近的慢波结构来实现的,以提供电子波相互作用和太赫兹波的放大。为了模拟这个问题,该项目将首先解决当前多尺度多物理场全球模型的计算效率和准确性低的问题。项目将特别介绍时域数值求解器,这些求解器基于多域使用无条件稳定性来获得时间优势和迭代校正以保持精度。PI将采用交替方向隐式(ADI)和迭代ADI算法,将其集成到多物理场有限差分时域方法中,以提供更高效的数值求解器。其次,该项目将使用拟议的求解器开发行为模型,材料和几何优化,从而通过这些研究提供功率,增益和带宽的初步估计。数值研究将用于优化制造和测量的设备。在这种情况下,该研究将广泛研究电磁慢波结构,对经典和新兴材料系统进行数值模拟,并提供新的器件概念,例如使用2DEG双层和超晶格。为了验证设备的概念,冷测试建议在Ka波段,设备原型和测量建议在W波段。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shubhendu Bhardwaj其他文献
2D Eigenmode Analysis Based on Physics Informed Neural Networks
基于物理信息神经网络的二维本征模分析
- DOI:
10.1109/usnc-ursi52151.2023.10237743 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Md Rayhan Khan;C. Zekios;Shubhendu Bhardwaj;S. Georgakopoulos - 通讯作者:
S. Georgakopoulos
Physics embedded neural network: Novel data-free approach towards scientific computing and applications in transfer learning
物理嵌入式神经网络:一种新颖的无数据科学计算方法及其在迁移学习中的应用
- DOI:
10.1016/j.neucom.2024.128936 - 发表时间:
2025-02-07 - 期刊:
- 影响因子:6.500
- 作者:
Pawan Gaire;Shubhendu Bhardwaj - 通讯作者:
Shubhendu Bhardwaj
Numerical Demonstration of THz Traveling Wave Amplifications in 2-D Electron Gas (2DEG) Under Scattering-Free and Low-Charge Density Regime
无散射和低电荷密度条件下二维电子气 (2DEG) 太赫兹行波放大的数值演示
- DOI:
10.1109/lmwt.2024.3383769 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Shubhendu Bhardwaj;Md Faiyaz Bin Hassan - 通讯作者:
Md Faiyaz Bin Hassan
C-shaped, E-shaped and U-slotted patch antennas: Size, bandwidth and cross-polarization characterizations
C 形、E 形和 U 形槽贴片天线:尺寸、带宽和交叉极化特性
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Shubhendu Bhardwaj;Yahya Rahmat - 通讯作者:
Yahya Rahmat
Shubhendu Bhardwaj的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shubhendu Bhardwaj', 18)}}的其他基金
I-Corps: Smart Textile Charging Platform for Wearable and Portable Devices
I-Corps:适用于可穿戴和便携式设备的智能纺织品充电平台
- 批准号:
2329682 - 财政年份:2022
- 资助金额:
$ 37.99万 - 项目类别:
Standard Grant
I-Corps: Smart Textile Charging Platform for Wearable and Portable Devices
I-Corps:适用于可穿戴和便携式设备的智能纺织品充电平台
- 批准号:
2048613 - 财政年份:2021
- 资助金额:
$ 37.99万 - 项目类别:
Standard Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Incentive and governance schenism study of corporate green washing behavior in China: Based on an integiated view of econfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
- 批准号:52301178
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
NbZrTi基多主元合金中化学不均匀性对辐照行为的影响研究
- 批准号:12305290
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
眼表菌群影响糖尿病患者干眼发生的人群流行病学研究
- 批准号:82371110
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
- 批准号:12375280
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
CuAgSe基热电材料的结构特性与构效关系研究
- 批准号:22375214
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
基于大数据定量研究城市化对中国季节性流感传播的影响及其机理
- 批准号:82003509
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mode control of intense terahertz wave source based on angular momentum carried by spoof plasmon
基于欺骗等离子体激元携带角动量的强太赫兹波源模式控制
- 批准号:
22K14617 - 财政年份:2022
- 资助金额:
$ 37.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Characterization and control of defects in low-temperature-grown Bi-based compound semiconductors for novel terahertz wave emitters and detectors
用于新型太赫兹波发射器和探测器的低温生长铋基化合物半导体的缺陷表征和控制
- 批准号:
21K04910 - 财政年份:2021
- 资助金额:
$ 37.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ASCENT: Ultra-high Throughput Neural Recording using Flexible, Polymer-based Shanks as Terahertz Dielectric Waveguides
ASCENT:使用柔性聚合物柄作为太赫兹介电波导进行超高吞吐量神经记录
- 批准号:
2133138 - 财政年份:2021
- 资助金额:
$ 37.99万 - 项目类别:
Standard Grant
Generation of terahertz vortex based on reflectionless metasurface with high refractive index
基于高折射率无反射超表面的太赫兹涡旋产生
- 批准号:
21K18712 - 财政年份:2021
- 资助金额:
$ 37.99万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Innovative meal: characterization of sausages stuffed in a new novel casing formulation with flavonoids extracted from waste orange peel based on terahertz spectroscopy and imaging
创新餐食:基于太赫兹光谱和成像对采用从废橙皮中提取的类黄酮的新型肠衣配方填充的香肠进行表征
- 批准号:
20K15477 - 财政年份:2020
- 资助金额:
$ 37.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of terahertz optical devices based on printable heavily-doped conducting polymers
基于可印刷重掺杂导电聚合物的太赫兹光学器件的开发
- 批准号:
20K04561 - 财政年份:2020
- 资助金额:
$ 37.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on 2D fast terahertz beam steering based on dielectric-free waveguiding structures
基于无介质波导结构的二维快速太赫兹光束控制研究
- 批准号:
20H02154 - 财政年份:2020
- 资助金额:
$ 37.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Compact coherent sub-terahertz sources based on quantum dot laser frequency combs
基于量子点激光频率梳的紧凑型相干亚太赫兹源
- 批准号:
438641949 - 财政年份:2020
- 资助金额:
$ 37.99万 - 项目类别:
Research Fellowships
Millimeter- and Terahertz- Wave Absorber Designed by Antiferromagnetic Resonance of Iron-Based Corundum Oxides
利用铁基刚玉氧化物反铁磁共振设计毫米波和太赫兹波吸收体
- 批准号:
20J12063 - 财政年份:2020
- 资助金额:
$ 37.99万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Efficient terahertz emission based on spin caloritronics
基于自旋热电子学的高效太赫兹发射
- 批准号:
18KK0377 - 财政年份:2019
- 资助金额:
$ 37.99万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))