Optimizing Lung Cancer Screening Nodule Evaluation

优化肺癌筛查结节评估

基本信息

  • 批准号:
    10317717
  • 负责人:
  • 金额:
    $ 75.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

SUMMARY The goal of this project is to optimize the management of screen-detected pulmonary nodules thus maximizing the benefits of lung cancer screening. Lung cancer is the most common cause of cancer death in the US. To curb the burden of this disease, multiple national organizations recommend lung cancer screening with low- dose computed tomography (LDCT). However, up to one third of screening LDCTs identify pulmonary nodules but only 1-3% of these are cancers. Screen-detected pulmonary nodules are then followed-up with additional imaging tests and, in some cases, invasive and potentially harmful procedures. Follow-up and subsequent work-up procedures account for a large portion of screening-associated unnecessary harms and costs. An optimal nodule management algorithm should substantially reduce these harms and provide early cancer detection benefits. However, the optimal management of pulmonary nodules detected during lung cancer screening is currently unknown. There are differing major guidelines for LDCT screen-detected lung nodule management. Most widely implemented guidelines focus on nodule characteristics to decide the need for and type of follow-up. These guidelines fail to incorporate other key patient factors such as age, sex, smoking history, and comorbidities. Furthermore, additional factors can heavily impact the diagnostic accuracy and harms of nodule management strategies and ultimately, the benefits of lung cancer screening. These include: 1) risk of lung cancer based on participant and nodule characteristics; 2) cancer aggressiveness; 3) type, sequence and timing of nodule follow-up; 4) follow-up and biopsy related complications; 5) competing risks of death (non-lung cancer mortality); and 6) impact of evaluation on quality of life. Furthermore, differences in smoking patterns, lung cancer risk, and comorbidities among diverse race and ethnic groups are not incorporated in current nodule management guidelines. In this project, we will use simulation modeling to efficiently determine optimal algorithms that consider all the issues listed above. We will build a simulation model, the Multi-Racial and Ethnic Lung Cancer Model (MELCAM), based on a previous modeling framework used by our team to extensively study various aspects of lung cancer control. The project Specific Aims are to: 1) Derive and validate MELCAM to simulate the management and subsequent outcomes of screening participants from diverse racial and ethnic backgrounds; 2) Use MELCAM to compare existing nodule management protocols in terms of overall and quality-adjusted life-year gains and harms; 3) Use MELCAM to generate nodule management algorithm(s) that consider the impact of both nodule and patient factors on cancer risk, screening harms, and life expectancy to optimize the types and timing of follow-up procedures; and 4) Determine the cost-effectiveness of existing and novel follow-up algorithms. Our study is innovative in applying state-of-the-art modeling techniques and personalized approaches to the optimization of pulmonary nodule management maximizing the benefits of lung cancer screening in diverse populations.
总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chung Yin Kong其他文献

Chung Yin Kong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chung Yin Kong', 18)}}的其他基金

Modeling Best Approaches for Cardiovascular Disease Prevention in Cancer Survivors
模拟癌症幸存者心血管疾病预防的最佳方法
  • 批准号:
    10608446
  • 财政年份:
    2023
  • 资助金额:
    $ 75.19万
  • 项目类别:
Optimizing Lung Cancer Screening in Cancer Survivors
优化癌症幸存者的肺癌筛查
  • 批准号:
    10451668
  • 财政年份:
    2021
  • 资助金额:
    $ 75.19万
  • 项目类别:
Optimizing Lung Cancer Screening in Cancer Survivors
优化癌症幸存者的肺癌筛查
  • 批准号:
    10654616
  • 财政年份:
    2021
  • 资助金额:
    $ 75.19万
  • 项目类别:
Optimizing Lung Cancer Screening Nodule Evaluation
优化肺癌筛查结节评估
  • 批准号:
    10450181
  • 财政年份:
    2021
  • 资助金额:
    $ 75.19万
  • 项目类别:
Optimizing Lung Cancer Screening Nodule Evaluation
优化肺癌筛查结节评估
  • 批准号:
    10668248
  • 财政年份:
    2021
  • 资助金额:
    $ 75.19万
  • 项目类别:
Optimizing Lung Cancer Screening in Cancer Survivors
优化癌症幸存者的肺癌筛查
  • 批准号:
    10317359
  • 财政年份:
    2021
  • 资助金额:
    $ 75.19万
  • 项目类别:
Comparative Modeling of Lung Cancer Control Policies
肺癌控制政策的比较模型
  • 批准号:
    8548101
  • 财政年份:
    2010
  • 资助金额:
    $ 75.19万
  • 项目类别:
Comparative Modeling of Lung Cancer Control Policies
肺癌控制政策的比较模型
  • 批准号:
    8799653
  • 财政年份:
    2010
  • 资助金额:
    $ 75.19万
  • 项目类别:
Applications of Multi-Criteria Optimization (AMCO) to Cancer Simulation Modeling
多标准优化 (AMCO) 在癌症模拟建模中的应用
  • 批准号:
    8298239
  • 财政年份:
    2009
  • 资助金额:
    $ 75.19万
  • 项目类别:
Applications of Multi-Criteria Optimization (AMCO) to Cancer Simulation Modeling
多标准优化 (AMCO) 在癌症模拟建模中的应用
  • 批准号:
    8525092
  • 财政年份:
    2009
  • 资助金额:
    $ 75.19万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 75.19万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 75.19万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 75.19万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 75.19万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 75.19万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 75.19万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 75.19万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 75.19万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 75.19万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 75.19万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了