Optimizing Lung Cancer Screening Nodule Evaluation
优化肺癌筛查结节评估
基本信息
- 批准号:10668248
- 负责人:
- 金额:$ 68.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AgeAlgorithmsAmericanBehaviorBiopsyBritishCancer ControlCancer EtiologyCancer Intervention and Surveillance Modeling NetworkCancer ModelCessation of lifeCharacteristicsChestClinical DataClinical TrialsCost Effectiveness AnalysisCosts and BenefitsDisparityEligibility DeterminationEnrollmentEquilibriumEthnic OriginEthnic PopulationEvaluationGoalsGrowthGuidelinesHarm ReductionImageImpact evaluationLife ExpectancyLungLung noduleMalignant - descriptorMalignant NeoplasmsMalignant neoplasm of lungMinorityMinority GroupsModelingNatural HistoryNoduleOutcomeParticipantPatientsPatternPerformancePoliciesPopulationPopulation HeterogeneityProceduresProtocols documentationQuality of lifeQuality-Adjusted Life YearsRaceRecommendationRegistriesRiskSamplingScreening for cancerSmokingSmoking HistorySocietiesStructureTechniquesTestingWomanburden of illnesscancer riskclinically significantcomorbiditycomparative effectivenesscomparative effectiveness analysiscomputed tomography screeningcostcost effectivenessdiagnostic accuracyethnic diversityfollow-upimprovedinnovationlow dose computed tomographylung cancer screeningmenmodels and simulationmortalitymortality riskmulti-racialnovelpersonalized approachpersonalized managementprogramsracial diversityracial populationscreeningscreening guidelinessextool
项目摘要
SUMMARY
The goal of this project is to optimize the management of screen-detected pulmonary nodules thus maximizing
the benefits of lung cancer screening. Lung cancer is the most common cause of cancer death in the US. To
curb the burden of this disease, multiple national organizations recommend lung cancer screening with low-
dose computed tomography (LDCT). However, up to one third of screening LDCTs identify pulmonary nodules
but only 1-3% of these are cancers. Screen-detected pulmonary nodules are then followed-up with additional
imaging tests and, in some cases, invasive and potentially harmful procedures. Follow-up and subsequent
work-up procedures account for a large portion of screening-associated unnecessary harms and costs. An
optimal nodule management algorithm should substantially reduce these harms and provide early cancer
detection benefits. However, the optimal management of pulmonary nodules detected during lung cancer
screening is currently unknown. There are differing major guidelines for LDCT screen-detected lung nodule
management. Most widely implemented guidelines focus on nodule characteristics to decide the need for and
type of follow-up. These guidelines fail to incorporate other key patient factors such as age, sex, smoking
history, and comorbidities. Furthermore, additional factors can heavily impact the diagnostic accuracy and
harms of nodule management strategies and ultimately, the benefits of lung cancer screening. These include:
1) risk of lung cancer based on participant and nodule characteristics; 2) cancer aggressiveness; 3) type,
sequence and timing of nodule follow-up; 4) follow-up and biopsy related complications; 5) competing risks of
death (non-lung cancer mortality); and 6) impact of evaluation on quality of life. Furthermore, differences in
smoking patterns, lung cancer risk, and comorbidities among diverse race and ethnic groups are not
incorporated in current nodule management guidelines. In this project, we will use simulation modeling to
efficiently determine optimal algorithms that consider all the issues listed above. We will build a simulation
model, the Multi-Racial and Ethnic Lung Cancer Model (MELCAM), based on a previous modeling framework
used by our team to extensively study various aspects of lung cancer control. The project Specific Aims are to:
1) Derive and validate MELCAM to simulate the management and subsequent outcomes of screening
participants from diverse racial and ethnic backgrounds; 2) Use MELCAM to compare existing nodule
management protocols in terms of overall and quality-adjusted life-year gains and harms; 3) Use MELCAM to
generate nodule management algorithm(s) that consider the impact of both nodule and patient factors on
cancer risk, screening harms, and life expectancy to optimize the types and timing of follow-up procedures;
and 4) Determine the cost-effectiveness of existing and novel follow-up algorithms. Our study is innovative in
applying state-of-the-art modeling techniques and personalized approaches to the optimization of pulmonary
nodule management maximizing the benefits of lung cancer screening in diverse populations.
总结
该项目的目标是优化屏幕检测肺结节的管理,从而最大限度地提高
肺癌筛查的好处肺癌是美国癌症死亡的最常见原因。到
为了控制这种疾病的负担,多个国家组织建议用低-
剂量计算机断层扫描(LDCT)。然而,多达三分之一的筛查LDCT识别肺结节
但其中只有1-3%是癌症然后对筛查出的肺结节进行额外的随访,
影像学检查,以及在某些情况下,侵入性和潜在有害的程序。后续行动和后续行动
检查程序占了与筛查相关的不必要的伤害和成本的很大一部分。一个
最佳的结节管理算法应该大大减少这些危害,并提供早期癌症
检测优势。然而,肺癌期间检测到的肺结节的最佳管理
筛查目前尚不清楚。LDCT筛查发现肺结节有不同的主要指南
管理大多数得到广泛执行的准则侧重于结核的特性,以决定是否需要
后续的类型。这些指南未能纳入其他关键的患者因素,如年龄,性别,吸烟
病史和合并症此外,其他因素可能严重影响诊断准确性,
结节管理策略的危害以及最终肺癌筛查的好处。其中包括:
1)基于参与者和结节特征的肺癌风险; 2)癌症侵袭性; 3)类型,
结节随访的顺序和时间; 4)随访和活检相关并发症; 5)
死亡(非肺癌死亡率); 6)评价对生活质量的影响。此外,
不同种族和民族之间的吸烟模式、肺癌风险和合并症不是
已纳入现行结核管理准则。在这个项目中,我们将使用仿真建模,
有效地确定考虑上述所有问题的最佳算法。我们将建立一个模拟
模型,多种族和民族肺癌模型(MELCAM),基于以前的建模框架
我们的团队使用它来广泛研究肺癌控制的各个方面。该项目的具体目标是:
1)推导并验证MELCAM,以模拟筛查的管理和后续结局
来自不同种族和民族背景的参与者; 2)使用MELCAM比较现有结节
管理协议的整体和质量调整的生命年收益和危害; 3)使用MELCAM,
生成结节管理算法,其考虑结节和患者因素两者的影响,
癌症风险、筛查危害和预期寿命,以优化随访程序的类型和时间;
以及4)确定现有的和新的后续算法的成本效益。我们的研究具有创新性,
应用最先进的建模技术和个性化方法来优化肺
结核管理最大限度地提高肺癌筛查在不同人群中的效益。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cancer Risk in Nodules Detected at Follow-Up Lung Cancer Screening CT.
- DOI:10.2214/ajr.21.26927
- 发表时间:2022-04
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Strategies for Reducing False-Positive Screening Results for Intermediate-Size Nodules Evaluated Using Lung-RADS: A Secondary Analysis of National Lung Screening Trial Data.
- DOI:10.2214/ajr.22.27595
- 发表时间:2022-09
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Rate of benign nodule resection in a lung cancer screening program.
肺癌筛查计划中良性结节切除率。
- DOI:10.1016/j.clinimag.2023.109984
- 发表时间:2023
- 期刊:
- 影响因子:2.1
- 作者:ElAlam,Raquelle;Byrne,SuzanneC;Hammer,MarkM
- 通讯作者:Hammer,MarkM
Comparison of Lung-RADS Version 1.1 and Lung-RADS Version 2022 in Classifying Airway Nodules Detected at Lung Cancer Screening CT.
Lung-RADS 1.1 版和 Lung-RADS 2022 版在对肺癌筛查 CT 检测到的气道结节进行分类方面的比较。
- DOI:10.1148/ryct.230149
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:DeSimone,AriadneK;Byrne,SuzanneC;Hammer,MarkM
- 通讯作者:Hammer,MarkM
Factors Influencing the False Positive Rate in CT Lung Cancer Screening.
- DOI:10.1016/j.acra.2020.07.040
- 发表时间:2022-03
- 期刊:
- 影响因子:4.8
- 作者:Hammer, Mark M.;Byrne, Suzanne C.;Kong, Chung Yin
- 通讯作者:Kong, Chung Yin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chung Yin Kong其他文献
Chung Yin Kong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chung Yin Kong', 18)}}的其他基金
Modeling Best Approaches for Cardiovascular Disease Prevention in Cancer Survivors
模拟癌症幸存者心血管疾病预防的最佳方法
- 批准号:
10608446 - 财政年份:2023
- 资助金额:
$ 68.62万 - 项目类别:
Optimizing Lung Cancer Screening in Cancer Survivors
优化癌症幸存者的肺癌筛查
- 批准号:
10451668 - 财政年份:2021
- 资助金额:
$ 68.62万 - 项目类别:
Optimizing Lung Cancer Screening in Cancer Survivors
优化癌症幸存者的肺癌筛查
- 批准号:
10654616 - 财政年份:2021
- 资助金额:
$ 68.62万 - 项目类别:
Optimizing Lung Cancer Screening Nodule Evaluation
优化肺癌筛查结节评估
- 批准号:
10317717 - 财政年份:2021
- 资助金额:
$ 68.62万 - 项目类别:
Optimizing Lung Cancer Screening Nodule Evaluation
优化肺癌筛查结节评估
- 批准号:
10450181 - 财政年份:2021
- 资助金额:
$ 68.62万 - 项目类别:
Optimizing Lung Cancer Screening in Cancer Survivors
优化癌症幸存者的肺癌筛查
- 批准号:
10317359 - 财政年份:2021
- 资助金额:
$ 68.62万 - 项目类别:
Comparative Modeling of Lung Cancer Control Policies
肺癌控制政策的比较模型
- 批准号:
8548101 - 财政年份:2010
- 资助金额:
$ 68.62万 - 项目类别:
Comparative Modeling of Lung Cancer Control Policies
肺癌控制政策的比较模型
- 批准号:
8799653 - 财政年份:2010
- 资助金额:
$ 68.62万 - 项目类别:
Applications of Multi-Criteria Optimization (AMCO) to Cancer Simulation Modeling
多标准优化 (AMCO) 在癌症模拟建模中的应用
- 批准号:
8298239 - 财政年份:2009
- 资助金额:
$ 68.62万 - 项目类别:
Applications of Multi-Criteria Optimization (AMCO) to Cancer Simulation Modeling
多标准优化 (AMCO) 在癌症模拟建模中的应用
- 批准号:
8525092 - 财政年份:2009
- 资助金额:
$ 68.62万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 68.62万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 68.62万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 68.62万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 68.62万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 68.62万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 68.62万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 68.62万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 68.62万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 68.62万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 68.62万 - 项目类别:
Research Grant