Controlling Quality and Capturing Uncertainty in Advanced Diffusion Weighted MRI

控制质量并捕捉高级扩散加权 MRI 的不确定性

基本信息

  • 批准号:
    10316671
  • 负责人:
  • 金额:
    $ 66.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-20 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Alzheimer’s Disease and related dementia are a growing public health crisis affecting 5.8 million Americans, yet there are only four FDA-approved medications for Alzheimer’s Disease, none of which are disease-modifying. Hence, early detection and diagnosis are key to successful patient management and biomarkers are needed for evaluating new therapies in clinical trials. White matter changes are increasingly implicated in early Alzheimer’s Disease progression, and diffusion weighted magnetic resonance imaging (DW-MRI) has been included in many national-scale studies. Yet, quantitative investigation of DW-MRI data is hindered by a lack of consistency due to variation in acquisition protocols, sites, and scanners. DW-MRI enables quantification of brain microstructure and facilitates structural connectivity mapping. Substantial recent progress has been made with calibration and harmonization to reduce inter-subject variance and improve interpretability of computed measures. Yet, the fundamental challenge remains that clinical application of DW-MRI (as currently implemented) is confounded by inter-scanner and inter-site effects. To improve understanding of structural changes in Alzheimer’s Disease, we will construct and evaluate three separate analysis strategies to characterize, calibrate, and optimize DW-MRI for single-subject biomarker development for Alzheimer’s Disease. We will integrate and optimize our strategies using large retrospective multi-site studies and validate the approaches on two distinct prospective cohorts. Specifically, we aim to: Aim 1: Optimize data-driven techniques for stability across sessions, scanners/sites, and field strengths Impact: Harmonized DW-MRI methods will increase sensitivity to Alzheimer’s Disease and its prodromal stages. Aim 2: Translate innovations in microstructural harmonization to structural connectivity (tractography) Impact: Harmonizing structural connectivity will improve understanding of white matter in Alzheimer’s Disease. Aim 3: Advance statistical tools for single-subject inference through normative database construction Impact: Data-driven resources for uncertainty estimation will enable robust single-single subject inference. Relevance and Impact on Healthcare: The proposed research will advance understanding of Alzheimer’s Disease through (1) quantitative harmonization of DW-MRI biomarkers, (2) protocols for harmonization of retrospective and prospective DW-MRI studies, and (3) new tools for single subject inference targeting older cohorts. We will organize workshops/challenges to maximize the translational impact on clinical science. The long-term goal of our research is to (1) provide a well-validated strategy to quantitatively evaluate DW-MRI data across sites, (2) enhance DW-MRI biomarkers for Alzheimer’s Disease, and (3) advance patient care. Our research strategy will transform the manner in which DW-MRI data are interpreted and enable single-subject machine learning to interpret brain properties. The resources, software, and visualization tools will be made freely available in open source through DIPY to facilitate continued innovation.
项目摘要 阿尔茨海默病和相关的痴呆症是一个日益严重的公共卫生危机,影响着580万美国人, 只有四种FDA批准的治疗阿尔茨海默病的药物,没有一种是改善疾病的。 因此,早期检测和诊断是成功的患者管理的关键,并且需要生物标志物用于 在临床试验中评估新疗法。白色物质变化越来越多地与早期阿尔茨海默氏症有关 疾病进展和弥散加权磁共振成像(DW-MRI)已被纳入许多 全国范围的研究。然而,DW-MRI数据的定量研究由于缺乏一致性而受到阻碍, 采集协议、站点和扫描仪的变化。DW-MRI能够量化大脑微观结构 并且便于结构连接映射。最近在校准方面取得了重大进展, 协调,以减少受试者之间的差异,提高计算测量的可解释性。然而 根本的挑战仍然是DW-MRI的临床应用(如目前实施的), 受到扫描仪间和部位间效应的混淆。 为了提高对阿尔茨海默病结构变化的理解,我们将构建和评估三个 单独的分析策略,用于表征、校准和优化单个受试者生物标志物的DW-MRI 阿尔茨海默病的发展。我们将使用大型回顾性分析工具整合和优化我们的战略 多中心研究,并验证了两个不同的前瞻性队列的方法。具体而言,我们的目标是: 目标1:优化数据驱动技术,实现跨会话、扫描仪/站点和场强的稳定性 影响:协调DW-MRI方法将增加对阿尔茨海默病及其前驱期的敏感性。 目标2:将微观结构协调的创新转化为结构连通性(纤维束成像) 影响:协调结构连接将提高对阿尔茨海默病中白色物质的理解。 目标3:通过规范数据库建设,推进单学科推理的统计工具 影响:用于不确定性估计的数据驱动资源将实现强大的单-单主题推理。 对医疗保健的相关性和影响:拟议的研究将促进对阿尔茨海默氏症的理解 通过(1)DW-MRI生物标志物的定量协调,(2) 回顾性和前瞻性DW-MRI研究,以及(3)针对老年人的单一受试者推断的新工具 同伙我们将组织研讨会/挑战赛,以最大限度地提高对临床科学的转化影响。的 我们研究的长期目标是:(1)提供一个有效的策略来定量评估DW-MRI数据 (2)增强阿尔茨海默病的DW-MRI生物标志物,(3)推进患者护理。我们 研究策略将改变DW-MRI数据的解释方式, 机器学习来解释大脑的特性。资源、软件和可视化工具将由 通过DIPY以开源形式免费提供,以促进持续创新。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bennett A. Landman其他文献

Higher skeletal muscle mitochondrial oxidative capacity is associated with preserved brain structure up to over a decade
较高的骨骼肌线粒体氧化能力与长达十多年的大脑结构保存有关。
  • DOI:
    10.1038/s41467-024-55009-z
  • 发表时间:
    2024-12-30
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Qu Tian;Erin E. Greig;Christos Davatzikos;Bennett A. Landman;Susan M. Resnick;Luigi Ferrucci
  • 通讯作者:
    Luigi Ferrucci
RAISE - Radiology AI Safety, an End-to-end lifecycle approach
RAISE - 放射学人工智能安全,一种端到端生命周期方法
  • DOI:
    10.48550/arxiv.2311.14570
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Cardoso;Julia Moosbauer;Tessa S. Cook;B. S. Erdal;Brad W. Genereaux;Vikash Gupta;Bennett A. Landman;Tiarna Lee;P. Nachev;Elanchezhian Somasundaram;Ronald M. Summers;Khaled Younis;S. Ourselin;Franz MJ Pfister
  • 通讯作者:
    Franz MJ Pfister
Broadband nanosensing using heterodyne interferometry
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bennett A. Landman
  • 通讯作者:
    Bennett A. Landman
Scaling Up 3D Kernels with Bayesian Frequency Re-parameterization for Medical Image Segmentation
通过贝叶斯频率重新参数化扩展 3D 内核以进行医学图像分割
Nucleus subtype classification using inter-modality learning
使用跨模态学习进行细胞核亚型分类
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lucas W. Remedios;Shunxing Bao;Samuel W. Remedios;Ho Hin Lee;L. Cai;Thomas Z. Li;Ruining Deng;Can Cui;Jia Li;Qi Liu;Ken S. Lau;Joseph T. Roland;M. K. Washington;Lori A. Coburn;Keith T. Wilson;Yuankai Huo;Bennett A. Landman
  • 通讯作者:
    Bennett A. Landman

Bennett A. Landman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bennett A. Landman', 18)}}的其他基金

Novel Integrative Approach for the Early Detection of Lung Cancer using Repeated Measures
使用重复测量早期检测肺癌的新综合方法
  • 批准号:
    10322712
  • 财政年份:
    2021
  • 资助金额:
    $ 66.51万
  • 项目类别:
Novel Integrative Approach for the Early Detection of Lung Cancer using Repeated Measures
使用重复测量早期检测肺癌的新综合方法
  • 批准号:
    10596570
  • 财政年份:
    2021
  • 资助金额:
    $ 66.51万
  • 项目类别:
Controlling Quality and Capturing Uncertainty in Advanced Diffusion Weighted MRI
控制质量并捕捉高级扩散加权 MRI 的不确定性
  • 批准号:
    10490904
  • 财政年份:
    2015
  • 资助金额:
    $ 66.51万
  • 项目类别:
Controlling Quality and Capturing Uncertainty in Advanced Diffusion Weighted MRI
控制质量并捕捉高级扩散加权 MRI 的不确定性
  • 批准号:
    10683306
  • 财政年份:
    2015
  • 资助金额:
    $ 66.51万
  • 项目类别:
Controlling Quality and Capturing Uncertainty in Advanced Diffusion Weighted MRI
控制质量并捕捉高级扩散加权 MRI 的不确定性
  • 批准号:
    9146951
  • 财政年份:
    2015
  • 资助金额:
    $ 66.51万
  • 项目类别:
Quantitative Image Analysis Techniques for Optic Nerve Disease
视神经疾病的定量图像分析技术
  • 批准号:
    8620598
  • 财政年份:
    2013
  • 资助金额:
    $ 66.51万
  • 项目类别:
Resource Development for the Java Image Science Toolkit
Java 图像科学工具包的资源开发
  • 批准号:
    8013701
  • 财政年份:
    2010
  • 资助金额:
    $ 66.51万
  • 项目类别:

相似海外基金

Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
  • 批准号:
    24K18114
  • 财政年份:
    2024
  • 资助金额:
    $ 66.51万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
  • 批准号:
    498288
  • 财政年份:
    2024
  • 资助金额:
    $ 66.51万
  • 项目类别:
    Operating Grants
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
  • 批准号:
    10089306
  • 财政年份:
    2024
  • 资助金额:
    $ 66.51万
  • 项目类别:
    Collaborative R&D
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
  • 批准号:
    23K20339
  • 财政年份:
    2024
  • 资助金额:
    $ 66.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
  • 批准号:
    498310
  • 财政年份:
    2024
  • 资助金额:
    $ 66.51万
  • 项目类别:
    Operating Grants
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
  • 批准号:
    2740736
  • 财政年份:
    2024
  • 资助金额:
    $ 66.51万
  • 项目类别:
    Studentship
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
  • 批准号:
    2406592
  • 财政年份:
    2024
  • 资助金额:
    $ 66.51万
  • 项目类别:
    Standard Grant
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
  • 批准号:
    2305890
  • 财政年份:
    2024
  • 资助金额:
    $ 66.51万
  • 项目类别:
    Fellowship Award
虚弱高齢者のSuccessful Agingを支える地域課題分析指標と手法の確立
建立区域问题分析指标和方法,支持体弱老年人成功老龄化
  • 批准号:
    23K20355
  • 财政年份:
    2024
  • 资助金额:
    $ 66.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
「ケア期間」に着目したbiological aging指標の開発
开发聚焦“护理期”的生物衰老指数
  • 批准号:
    23K24782
  • 财政年份:
    2024
  • 资助金额:
    $ 66.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了