SCH: Advancing Language-based Analyses of Social Media to Reliably Monitor Variation in Population

SCH:推进基于语言的社交媒体分析,以可靠地监测人口变化

基本信息

项目摘要

This proposal seeks to address a key challenge in public health : the ongoing and fine-grained measurement of population mental health. Currently, in the largest population surveys, measurement of mental health is limited in time to annual estimates, in space to predominantly metropolitan areas and in scope to single questions about "mental health" or "depression". Through interdisciplinary work, we propose to advance approaches to language-based analysis of social media to measure mental health, sub-annually, ·at the county level and broaden the scope beyond depression to anxiety, stress, as well as to protective mental health factors (such as healthy social relationships). This will provide the research community with a much richer, timely and localized picture of population mental health. The language of social media has been shown to be a flexible source of information about population behaviors, thoughts and feelings It is available with high spatial and temporal resolution, suggesting great potential for the study and monitoring of population mental health. However, approaches for tracking psychological states across communities on social media were not developed with consideration for spatial and temporal confounds or to fully leverage the multi-level structure (and sample sizes) of the data. Proposed work will develop multi-level methods to control for spatial correlation and community socioeconomic covariance to increase statistical power and the accuracy of measurement. The increased power will also better enable quasi-experimental designs from epidemiology which will be combined with the Twitter-based estimates to track the impact of policy and socioeconomic shocks on mental health. The work in this proposal could significantly transform both research in population mental health and the ability to apply and track the efficacy of policy to improve public health , It will allow researchers to observe temporal changes in population mental health quarterly and for counties, which provides the measurement infrastructure to observe changes in response to natural experiments such as economic shocks and policy interventions. This will be possible in near real-time, without the reporting lag of a few years as in current survey methodologies. The ongoing measurement will help identify areas of greatest need and may help prioritize resource allocation. The improved quasi-experimental modeling of mental health determinants may inform policy interventions, and the ongoing monitoring can establish evidence of their efficacy, In tum, the burden of mental unhealth on society may be substantively reduced in the long term.
该提案旨在解决公共卫生领域的一个关键挑战: 衡量人口心理健康。目前,在最大规模的人口调查中, 心理健康在时间上限于年度估计,在空间上限于主要的大都市地区, 关于“心理健康”或“抑郁症”的单一问题。通过跨学科的工作,我们 建议推进基于语言的社交媒体分析方法,以衡量心理健康, 在县一级,将抑郁症的范围扩大到焦虑、压力以及 保护性心理健康因素(如健康的社会关系)。这将提供研究 社区提供更丰富、及时和本地化的人口心理健康状况。 社交媒体的语言已被证明是有关人口的灵活信息来源 它具有高空间和时间分辨率,这意味着 研究和监测人口心理健康的潜力。然而,跟踪方法 社交媒体上社区的心理状态并没有考虑到空间因素 和时间混淆或充分利用数据的多级结构(和样本大小)。 拟议的工作将开发多层次的方法来控制空间相关性和社区 社会经济协方差,以提高统计能力和测量的准确性。增加的 功率也将更好地实现流行病学的准实验设计, 基于Twitter的估计,以跟踪政策和社会经济冲击对心理健康的影响。 这项提案中的工作可以显著改变人口心理健康研究和 能够应用和跟踪政策的有效性,以改善公共卫生,它将使研究人员观察 人口心理健康季度和各县的时间变化,提供了衡量 基础设施,以观察对经济冲击和政策等自然实验的反应变化 干预措施。这将是近实时的,而不像目前的报告滞后几年。 调查方法。正在进行的衡量将有助于确定最需要的领域, 优先分配资源。心理健康影响因素准实验模型的改进 可以为政策干预提供信息,持续的监测可以证明其有效性,反过来, 从长远来看,精神不健康对社会造成的负担可能会大大减少。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Johannes C. Eichstaedt其他文献

LLM-generated messages can persuade humans on policy issues
大型语言模型生成的信息可以在政策问题上说服人类
  • DOI:
    10.1038/s41467-025-61345-5
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Hui Bai;Jan G. Voelkel;Shane Muldowney;Johannes C. Eichstaedt;Robb Willer
  • 通讯作者:
    Robb Willer

Johannes C. Eichstaedt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Johannes C. Eichstaedt', 18)}}的其他基金

SCH: Advancing Language-based Analyses of Social Media to Reliably Monitor Variation in Population
SCH:推进基于语言的社交媒体分析,以可靠地监测人口变化
  • 批准号:
    10165085
  • 财政年份:
    2021
  • 资助金额:
    $ 27.32万
  • 项目类别:
SCH: Advancing Language-based Analyses of Social Media to Reliably Monitor Variation in Population
SCH:推进基于语言的社交媒体分析,以可靠地监测人口变化
  • 批准号:
    10529303
  • 财政年份:
    2021
  • 资助金额:
    $ 27.32万
  • 项目类别:

相似海外基金

Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
  • 批准号:
    MR/X034690/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27.32万
  • 项目类别:
    Fellowship
Clinitouch-360: A digital health platform enabling robust end-to-end care of patients in Primary Care with depression and anxiety
Clinitouch-360:数字健康平台,可为初级保健中的抑郁和焦虑患者提供强大的端到端护理
  • 批准号:
    10098274
  • 财政年份:
    2024
  • 资助金额:
    $ 27.32万
  • 项目类别:
    Collaborative R&D
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
  • 批准号:
    10826673
  • 财政年份:
    2024
  • 资助金额:
    $ 27.32万
  • 项目类别:
Healthy Young Minds: co-producing a nature-based intervention with rural High School students to promote mental well-being and reduce anxiety
健康的年轻心灵:与农村高中生共同开展基于自然的干预措施,以促进心理健康并减少焦虑
  • 批准号:
    MR/Z503599/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27.32万
  • 项目类别:
    Research Grant
Visual analysis system to detect and predict the signs of anxiety in healthcare
用于检测和预测医疗保健中焦虑迹象的视觉分析系统
  • 批准号:
    2902083
  • 财政年份:
    2024
  • 资助金额:
    $ 27.32万
  • 项目类别:
    Studentship
Using generative AI combined with immersive technology to treat anxiety disorders
利用生成式人工智能结合沉浸式技术治疗焦虑症
  • 批准号:
    10109165
  • 财政年份:
    2024
  • 资助金额:
    $ 27.32万
  • 项目类别:
    Launchpad
"Flashforward" imagery and anxiety in young adults: Risk mechanisms and intervention development
年轻人的“闪现”意象和焦虑:风险机制和干预措施的发展
  • 批准号:
    MR/Y009460/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27.32万
  • 项目类别:
    Fellowship
How parents manage climate anxiety: coping and hoping for the whole family
父母如何应对气候焦虑:全家人的应对和希望
  • 批准号:
    DP230101928
  • 财政年份:
    2024
  • 资助金额:
    $ 27.32万
  • 项目类别:
    Discovery Projects
An innovative biofeedback enhanced adaptive extended reality (XR) device to reduce perinatal pain and anxiety during and after childbirth
一种创新的生物反馈增强型自适应扩展现实 (XR) 设备,可减少分娩期间和分娩后的围产期疼痛和焦虑
  • 批准号:
    10097862
  • 财政年份:
    2024
  • 资助金额:
    $ 27.32万
  • 项目类别:
    Collaborative R&D
Application name Phase Space - VR hypnotherapy as early intervention for anxiety in students and young people
应用程序名称 Phase Space - VR 催眠疗法作为学生和年轻人焦虑的早期干预
  • 批准号:
    10055011
  • 财政年份:
    2023
  • 资助金额:
    $ 27.32万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了