Synergistic Material-Microbe Interface towards Faster, Deeper, and Air-tolerant Reductive Dehalogenation
协同材料-微生物界面实现更快、更深、耐空气的还原脱卤
基本信息
- 批准号:10317116
- 负责人:
- 金额:$ 30.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2025-10-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdvanced DevelopmentAerobicAirAnaerobic BacteriaBiochemicalBiochemical ProcessBiologyBioremediationsBypassChargeDevelopmentDevicesDioxanesElectricityElectrodesElectron TransportEnvironmentEnvironmental PollutionEnzymesExcisionFutureGoalsHybridsInvestigationLeadMass Spectrum AnalysisMediatingMethanobacteriaMicrobeNitrogen FixationOutcomeOxidation-ReductionPathway interactionsProcessPublic HealthReactionResolutionSiteSolar EnergySolventsSystemTechniquesTechnologyTestingValidationVariantWorkadvanced analyticsanalytical toolcostcost effectivedehalogenationdesigndriving forceelectron donorinnovationmaterials sciencemicrobialmicrobial communitymicroorganismnanomaterialsnanoscalenoveloperationoxidationpractical applicationremediationrestorationscale up
项目摘要
Project Summary/Abstract
Challenges exist in bioremediation of halogenated contaminants, including low donor utilization efficiency and
slow dehalogenation, low dehalogenation activity and degree for the emerging per- and polyfluorinated
substances, as well as the difficulty in simultaneously treating co-contaminants. To address those challenges,
this project integrates advances in materials sciences and microbial reductive dehalogenation and proposes a
synergistic materials-microbe interface that can achieve faster, deeper, and air-tolerant reductive
dehalogenation. Charge transfer mechanisms in the proposed electricity-driven materials-microbe hybrid will be
investigated, which will guide the design and optimization of novel nano- and micro-scale materials to enhance
the mass-transport efficiency and accelerate dehalogenation. The local electron donor levels can be stably
maintained at low levels, favoring dehalorespiring microorganisms over methanogens and homoacetogens,
leading to enhanced electron donor utilization. A systems-level understanding of microorganisms enriched in the
bioelectrochemical system and genes/enzymes responsible for deeper defluorination will be obtained with omics
techniques. Novel reductive defluorination products/pathways and synergistic interactions between microbial
and electrochemical defluorination will be elucidated using advanced analytical tools such as high-resolution
mass spectrometry. Furthermore, an air-tolerant materials-microbe framework for reductive dehalogenation will
be developed using a recently designed microwire array electrodes and implemented to achieve concurrent
oxidation of the co-contaminant 1,4-dioxane in an open system. This project will significantly advance the
mechanistic understanding of the accelerated and deeper reductive dehalogenation at the synergistic materials-
microbe interface. This hybrid framework is powered by electricity that can be generated from sustainable solar
energy and may lower the cost by reducing the requirement of fermentable organics and by combining the
anaerobic and aerobic remediation processes. The successful demonstration of this new paradigm of
bioremediation will potentially lead to future applications for cleaning up the halogenated contaminants and co-
contaminants in subsurface environments. The developed materials-microbe framework is also highly
transformable to the bioremediation processes of other environmental contaminants.
项目概要/摘要
卤化污染物的生物修复存在挑战,包括供体利用效率低和
新兴的全氟和多氟脱卤速度慢,脱卤活性和程度低
物质,以及同时处理共污染物的困难。为了应对这些挑战,
该项目整合了材料科学和微生物还原脱卤方面的进展,并提出了一个
协同材料-微生物界面,可实现更快、更深、耐空气还原
脱卤。所提出的电驱动材料-微生物混合体中的电荷转移机制将是
研究,这将指导新型纳米和微米级材料的设计和优化,以增强
传质效率并加速脱卤。局部电子供体水平可以稳定
保持在低水平,有利于脱卤呼吸微生物而不是产甲烷菌和同型产乙酸菌,
从而提高电子供体的利用率。对富含微生物的系统级了解
通过组学获得生物电化学系统和负责更深层次脱氟的基因/酶
技术。新型还原脱氟产品/途径以及微生物之间的协同相互作用
电化学脱氟将使用先进的分析工具(例如高分辨率)来阐明
质谱分析。此外,用于还原脱卤的耐空气材料-微生物框架将
使用最近设计的微线阵列电极进行开发并实现并发
开放系统中共污染物 1,4-二恶烷的氧化。该项目将显着推进
对协同材料加速和更深还原脱卤的机理理解-
微生物界面。这种混合框架由可持续太阳能产生的电力提供动力
能源,并且可以通过减少可发酵有机物的需求以及通过结合来降低成本
厌氧和好氧修复过程。这一新范式的成功示范
生物修复可能会导致未来用于清除卤化污染物和协同作用的应用
地下环境中的污染物。所开发的材料-微生物框架也高度
可转化为其他环境污染物的生物修复过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chong Liu其他文献
Chong Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chong Liu', 18)}}的其他基金
Synergistic Material-Microbe Interface towards Faster, Deeper, and Air-tolerant Reductive Dehalogenation
协同材料-微生物界面实现更快、更深、耐空气的还原脱卤
- 批准号:
10516048 - 财政年份:2021
- 资助金额:
$ 30.18万 - 项目类别:
Spatiotemporal control of concentration gradients with electrochemistry in extracelluar space
细胞外空间电化学浓度梯度的时空控制
- 批准号:
10664955 - 财政年份:2020
- 资助金额:
$ 30.18万 - 项目类别:
Spatiotemporal control of concentration gradients with electrochemistry in extracelluar space
细胞外空间电化学浓度梯度的时空控制
- 批准号:
10256801 - 财政年份:2020
- 资助金额:
$ 30.18万 - 项目类别:
Spatiotemporal control of concentration gradients with electrochemistry in extracelluar space
细胞外空间电化学浓度梯度的时空控制
- 批准号:
10797994 - 财政年份:2020
- 资助金额:
$ 30.18万 - 项目类别:
Spatiotemporal control of concentration gradients with electrochemistry in extracelluar space
细胞外空间电化学浓度梯度的时空控制
- 批准号:
10424583 - 财政年份:2020
- 资助金额:
$ 30.18万 - 项目类别:
Spatiotemporal control of concentration gradients with electrochemistry in extracelluar space
细胞外空间电化学浓度梯度的时空控制
- 批准号:
10029526 - 财政年份:2020
- 资助金额:
$ 30.18万 - 项目类别:
相似海外基金
ADVANCED DEVELOPMENT OF LQ A LIPOSOME-BASED SAPONIN-CONTAINING ADJUVANT FOR USE IN PANSARBECOVIRUS VACCINES
用于 Pansarbecovirus 疫苗的 LQ A 脂质体含皂苷佐剂的先进开发
- 批准号:
10935820 - 财政年份:2023
- 资助金额:
$ 30.18万 - 项目类别:
ADVANCED DEVELOPMENT OF BBT-059 AS A RADIATION MEDICAL COUNTERMEASURE FOR DOSING UP TO 48H POST EXPOSURE"
BBT-059 的先进开发,作为辐射医学对策,可在暴露后 48 小时内进行给药”
- 批准号:
10932514 - 财政年份:2023
- 资助金额:
$ 30.18万 - 项目类别:
Advanced Development of a Combined Shigella-ETEC Vaccine
志贺氏菌-ETEC 联合疫苗的先进开发
- 批准号:
10704845 - 财政年份:2023
- 资助金额:
$ 30.18万 - 项目类别:
Advanced development of composite gene delivery and CAR engineering systems
复合基因递送和CAR工程系统的先进开发
- 批准号:
10709085 - 财政年份:2023
- 资助金额:
$ 30.18万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10409385 - 财政年份:2022
- 资助金额:
$ 30.18万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10710595 - 财政年份:2022
- 资助金额:
$ 30.18万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10630975 - 财政年份:2022
- 资助金额:
$ 30.18万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE CANDIDATE FOR STAPHYLOCOCCUS AUREUS INFECTION
金黄色葡萄球菌感染候选疫苗的高级开发
- 批准号:
10710588 - 财政年份:2022
- 资助金额:
$ 30.18万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10788051 - 财政年份:2022
- 资助金额:
$ 30.18万 - 项目类别:














{{item.name}}会员




