Spatiotemporal control of concentration gradients with electrochemistry in extracelluar space

细胞外空间电化学浓度梯度的时空控制

基本信息

  • 批准号:
    10424583
  • 负责人:
  • 金额:
    $ 37.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-15 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Project Summary The natural environment is intrinsically spatiotemporally heterogenous at both macroscopic and microscopic levels. What shapes such a heterogeneity includes the concentration gradients of biologically relevant chemical species in the extracellular medium including dioxygen (O2), reactive oxygen species (ROS), as well as essential redox-active transition metals. While a significant amount of effort has been devoted to spectroscopically image these chemical moieties, our capability to spatiotemporally control their concentration distributions in the extracellular medium remains limited. This is especially the case for biofilms and microbiota, in which the microorganisms’ small length scales pose significant challenges for concentration modulation. The inadequate control of concentration heterogeneity limits our capability of mimicking the natural environments in vitro and investigating how local concentration gradients affect microbial functionality. Therefore, there is a need for an advanced method of controlling chemical concentrations at microscopic level. Our proposed research aims to use electrochemical nano-/micro-electrodes to spatiotemporally control the concentration gradients in the extracellular medium. When an electrochemical reaction occurs on an electrode’s surface, a concentration gradient is established near the electrode. Taking advantages of this phenomena with the assistance of numerical simulation, we will employ an array of nano-/micro-electrodes with individually addressable electrochemical potentials to program any arbitrary spatiotemporal concentration profiles. We will fine-tune the surface chemistry and the electrochemical properties of these electrodes to ensure biocompatibility and reaction specificity. The developed system will be applied to biofilms and we aim to investigate how the microbial social behavior will be affected by a perturbation of local O2 concentration. Moreover, we will use this device to mimic the heterogenous environment in the gut and culture gut microbiota in vitro. An algorithm based on machine learning will be employed to actively adjust electrode potentials, maintaining a stable concentration profile despite the accumulation of gut microorganisms. Ultimately, our work will expand our capability of controlling the concentration heterogeneity in nature. The developed electrochemical system will serve an in vitro platform to culture microorganisms in their native environment, or as a tool to perturb the concentration profiles. Combining electrochemistry, inorganic chemistry, and nanomaterials the research will enable a deeper understanding of the spatial distribution and temporal response of microbial systems.
项目摘要 自然环境在宏观和微观两个方面都具有内在的时空异质性, 微观层面。形成这种异质性的因素包括生物学上的浓度梯度, 细胞外介质中的相关化学物质,包括分子氧(O2),活性氧(ROS), 以及必需的氧化还原活性过渡金属。虽然已经投入了大量的努力, 对这些化学成分进行光谱成像,我们时空控制其浓度能力 在细胞外介质中的分布仍然有限。对于生物膜和微生物群来说尤其如此, 其中微生物的小长度尺度对浓度调节提出了重大挑战。 浓度不均匀性的控制不足限制了我们模仿自然环境的能力。 在体外环境和调查如何局部浓度梯度影响微生物的功能。 因此,需要一种在微观水平上控制化学品浓度的先进方法。 我们提出的研究旨在使用电化学纳米/微电极时空 控制细胞外介质中的浓度梯度。当发生电化学反应时, 在电极的表面上,在电极附近建立浓度梯度。利用这一点 在数值模拟的帮助下,我们将采用纳米/微米电极阵列 利用可单独寻址的电化学电势, 浓度分布我们将微调这些材料的表面化学和电化学性质, 电极,以确保生物相容性和反应特异性。所开发的系统将应用于生物膜 我们的目标是研究微生物的社会行为将如何受到当地O2扰动的影响 浓度.此外,我们将使用该装置模拟肠道和培养物中的异质环境, 体外肠道菌群。将采用基于机器学习的算法来主动调整电极 潜在的,保持稳定的浓度曲线,尽管肠道微生物的积累。 最终,我们的工作将扩大我们控制自然界浓度异质性的能力。 所开发的电化学系统将作为体外平台在其天然环境中培养微生物。 环境中,或作为一种工具,扰乱浓度分布。结合电化学、无机 化学和纳米材料的研究将使人们能够更深入地了解空间分布, 微生物系统的时间响应。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chong Liu其他文献

Chong Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chong Liu', 18)}}的其他基金

Synergistic Material-Microbe Interface towards Faster, Deeper, and Air-tolerant Reductive Dehalogenation
协同材料-微生物界面实现更快、更深、耐空气的还原脱卤
  • 批准号:
    10317116
  • 财政年份:
    2021
  • 资助金额:
    $ 37.11万
  • 项目类别:
Synergistic Material-Microbe Interface towards Faster, Deeper, and Air-tolerant Reductive Dehalogenation
协同材料-微生物界面实现更快、更深、耐空气的还原脱卤
  • 批准号:
    10516048
  • 财政年份:
    2021
  • 资助金额:
    $ 37.11万
  • 项目类别:
Spatiotemporal control of concentration gradients with electrochemistry in extracelluar space
细胞外空间电化学浓度梯度的时空控制
  • 批准号:
    10664955
  • 财政年份:
    2020
  • 资助金额:
    $ 37.11万
  • 项目类别:
Spatiotemporal control of concentration gradients with electrochemistry in extracelluar space
细胞外空间电化学浓度梯度的时空控制
  • 批准号:
    10256801
  • 财政年份:
    2020
  • 资助金额:
    $ 37.11万
  • 项目类别:
Spatiotemporal control of concentration gradients with electrochemistry in extracelluar space
细胞外空间电化学浓度梯度的时空控制
  • 批准号:
    10797994
  • 财政年份:
    2020
  • 资助金额:
    $ 37.11万
  • 项目类别:
Spatiotemporal control of concentration gradients with electrochemistry in extracelluar space
细胞外空间电化学浓度梯度的时空控制
  • 批准号:
    10029526
  • 财政年份:
    2020
  • 资助金额:
    $ 37.11万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.11万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 37.11万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 37.11万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 37.11万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 37.11万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 37.11万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 37.11万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 37.11万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 37.11万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 37.11万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了