Learning the visual and cognitive bases of lung nodule detection
学习肺结节检测的视觉和认知基础
基本信息
- 批准号:10319004
- 负责人:
- 金额:$ 35.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-15 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAffectAnatomyAppearanceAttentionBehavioralBiomedical EngineeringCancer EtiologyCessation of lifeChestClinicClinicalCognitiveCollaborationsComplexComputer ModelsComputing MethodologiesDataDetectionDevelopmentDiagnosticFoundationsGoalsHealthHeartHumanImageIncidenceKnowledgeLearningLungLung noduleMalignant NeoplasmsMalignant neoplasm of lungMedicalMedical ImagingMethodsModelingNatureNoduleOutcome MeasureParticipantPathologyPatientsPerceptionPerformancePersonsPropertyProtocols documentationPulmonary Coin LesionPulmonary vesselsRadiology SpecialtyReaderReportingResearchResearch PersonnelSignal TransductionSurvival RateThoracic RadiographyTrainingUnited StatesVariantVisionVisualWomanX-Ray Medical Imagingbaseclinically relevantcognitive processcomputational neurosciencediagnostic toolexperienceimprovedlung basal segmentmenmodel developmentnovelradiologistrib bone structuresuccessvisual learningvisual process
项目摘要
Project Summary/Abstract
Lung cancer is the most frequent cause of cancer death in the United States among both men and women. If
lung nodules can be detected with greater reliability at an early stage, significant improvements in survival rate
would be achievable. Chest radiographs are among the most common diagnostic tool used in radiology, and
can reveal unexpected incidences of lung cancer. However, even expert radiologists may fail to detect the
presence of a subtle low-contrast pulmonary nodule against the high-contrast anatomical background of a
chest X-ray, with estimated rates of missed detection of 20-30%. What are the perceptual mechanisms,
cognitive mechanisms, and critical learning experiences that determine how well a person can perform this
challenging task of lung nodule detection? The PI and Co-Investigator have formed a synergistic collaboration
that brings together expertise in human vision, computational modeling and neuroscience (Dr. Tong) in concert
with thoracic imaging and biomedical engineering (Dr. Donnelly) to address this longstanding problem with high
clinical relevance. This project will develop a validated computational approach for generating a diverse set of
visually realistic simulated nodules to achieve the following goals. These are: 1) to characterize radiologist
performance on an image-by-image basis in an ecologically valid manner, 2) to develop a novel image-
computable model that accounts for expert performance, and 3) to develop a novel learning-based paradigm to
characterize the perceptual and cognitive mechanisms of nodule detection, initially in non-expert participants,
with the long-term goal of developing a protocol to enhance clinical training. The project will incorporate
sophisticated 2D image-based computational methods as well as data from 3D CT segmented nodules to
generate a diverse set of simulated nodule examples, each placed in a unique chest X-ray. Success will be
evaluated by the following outcome measures. First, radiologists should find it very difficult to tell apart real
from simulated nodules. Moreover, their performance accuracy at detecting/localizing simulated nodules
should be predictive of their accuracy for real nodules. Second, if the simulated nodules suitably capture the
variations of real nodule appearance, then non-expert participants who receive multiple sessions of training
with simulated nodules should show improved performance for both simulated and real nodules. This learning-
based paradigm will allow for characterization of the perceptual, cognitive, and learning-based factors that
govern nodule detection performance. Third, development and refinement of this learning-based paradigm
should have the potential to improve nodule detection performance in radiology residents. Finally, the
behavioral data gathered from radiologists and other top-performing participants will be used to develop an
image-computable model of nodule detection performance. As a whole, this project will lead to a more rigorous
understanding of the perceptual and cognitive bases of lung nodule detection, and spur the development of a
new learning-based protocol to enhance the training of radiology residents and other medical professionals.
项目总结/摘要
肺癌是美国男性和女性癌症死亡的最常见原因。如果
肺结节可以在早期检测到更高的可靠性,显著提高生存率
是可以实现的。胸片是放射学中最常用的诊断工具,
可以揭示肺癌的意外发病率。然而,即使是专业的放射科医生也可能无法检测到
存在一个微妙的低对比度肺结节对高对比度的解剖背景,
胸部X光检查,估计漏诊率为20- 30%。感知机制是什么,
认知机制和关键的学习经验,决定了一个人能做得多好,
肺结节检测的挑战性任务?主要研究者和合作研究者已形成协同合作
汇集了人类视觉、计算建模和神经科学方面的专业知识(Tong博士)
与胸部成像和生物医学工程(唐纳利博士),以解决这一长期存在的问题,高
临床相关性本项目将开发一种有效的计算方法,用于生成一组不同的
视觉上逼真的模拟结节,以实现以下目标。这些是:1)表征放射科医生
以生态有效的方式逐个图像地执行,2)开发新的图像-
可计算模型,占专家的表现,和3)开发一种新的学习为基础的范例,
表征结节检测的感知和认知机制,最初在非专家参与者中,
其长期目标是制定一项协议,以加强临床培训。该项目将包括
复杂的基于2D图像的计算方法以及来自3D CT分割结节的数据,
生成一组不同的模拟结节示例,每个示例都放置在一个独特的胸部X光片中。成功将是
通过以下结果测量进行评估。首先,放射科医生会发现很难区分真实的
从模拟的结节。此外,它们在检测/定位模拟结节方面的性能准确性
应该预测它们对于真实的结节的准确性。第二,如果模拟结节适当地捕获
真实的结节外观的变化,然后接受多次培训的非专家参与者
对于模拟的和真实的结节都应该显示出改进的性能。这种学习-
基于范例的方法将允许表征感知、认知和基于学习的因素,
控制结节检测性能。第三,发展和完善这种以学习为基础的范式
应该有潜力提高放射科住院医师的结节检测性能。最后
从放射科医生和其他表现最好的参与者那里收集的行为数据将用于制定一个
结节检测性能的图像可计算模型。作为一个整体,这个项目将导致一个更严格的
了解肺结节检测的感知和认知基础,并促进
新的以学习为基础的协议,以加强放射科住院医生和其他医疗专业人员的培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FRANK TONG其他文献
FRANK TONG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FRANK TONG', 18)}}的其他基金
Neural and computational mechanisms underlying robust object recognition
鲁棒物体识别背后的神经和计算机制
- 批准号:
10682285 - 财政年份:2023
- 资助金额:
$ 35.94万 - 项目类别:
Learning the visual and cognitive bases of lung nodule detection
学习肺结节检测的视觉和认知基础
- 批准号:
10528458 - 财政年份:2020
- 资助金额:
$ 35.94万 - 项目类别:
Perceptual functions of the human lateral geniculate nucleus
人类外侧膝状核的知觉功能
- 批准号:
10224205 - 财政年份:2018
- 资助金额:
$ 35.94万 - 项目类别:
Perceptual functions of the human lateral geniculate nucleus
人类外侧膝状核的知觉功能
- 批准号:
9979898 - 财政年份:2018
- 资助金额:
$ 35.94万 - 项目类别:
Neural Representation of Features in the Human Visual Cortex
人类视觉皮层特征的神经表征
- 批准号:
7923604 - 财政年份:2009
- 资助金额:
$ 35.94万 - 项目类别:
Neural Representation of Features in the Human Visual Cortex
人类视觉皮层特征的神经表征
- 批准号:
7915334 - 财政年份:2007
- 资助金额:
$ 35.94万 - 项目类别:
Neural Representation of Features in the Human Visual Cortex
人类视觉皮层特征的神经表征
- 批准号:
7679429 - 财政年份:2007
- 资助金额:
$ 35.94万 - 项目类别:
Neural Representation of Features in the Human Visual Cortex
人类视觉皮层特征的神经表征
- 批准号:
7490462 - 财政年份:2007
- 资助金额:
$ 35.94万 - 项目类别:
Neural Representation of Features in the Human Visual Cortex
人类视觉皮层特征的神经表征
- 批准号:
8142005 - 财政年份:2007
- 资助金额:
$ 35.94万 - 项目类别:
Neural Representation of Features in the Human Visual Cortex
人类视觉皮层特征的神经表征
- 批准号:
7317112 - 财政年份:2007
- 资助金额:
$ 35.94万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 35.94万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 35.94万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 35.94万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 35.94万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 35.94万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 35.94万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 35.94万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 35.94万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 35.94万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 35.94万 - 项目类别:
Research Grant