Identification of Distinct Multimodal Biotypes of PTSD Using Data Driven Approach: A Multisite Big Data Study
使用数据驱动方法识别 PTSD 的独特多模式生物型:多站点大数据研究
基本信息
- 批准号:10317107
- 负责人:
- 金额:$ 17.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-10 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdvanced DevelopmentAnxietyAnxiety DisordersBehavioralBig DataBiologicalBiological MarkersBrainBrain imagingCategoriesClassificationClinicalClinical TreatmentClinical TrialsCluster AnalysisComplexDSM-IVDataData SetDependenceDevelopmentDiagnosisDiagnosticDimensionsDiseaseEnsureEnvironmentFosteringFrightFunctional disorderFutureGoalsGrantHeterogeneityIndividualKnowledgeMachine LearningMagnetic Resonance ImagingMajor Depressive DisorderMeasuresMental DepressionMentored Research Scientist Development AwardMentorshipMethodsModelingMultimodal ImagingNational Institute of Mental HealthNeurobiologyPatientsPatternPattern RecognitionPharmaceutical PreparationsPost-Traumatic Stress DisordersPrediction of Response to TherapyPrevalencePsychiatryPsychosesPsychotherapyPublic HealthReproducibilityResearchResearch PersonnelResearch Project GrantsResearch SupportResearch TrainingRestSample SizeSelection for TreatmentsSubgroupSupervisionSymptomsTechniquesTrainingTranslational ResearchTraumaTreatment outcomeWorkadvanced analyticsanxiety-related disordersassociated symptomauthoritybaseclinical heterogeneityclinical phenotypecomorbiditydata fusiondesignexperiencegray matterindividualized medicinelarge datasetsmachine learning modelmemory processmultimodal datamultimodal neuroimagingmultimodalityneurobiological mechanismpatient orientedpredicting responseprogramsrelating to nervous systemreward processingskillssupervised learningtherapy developmenttrauma exposuretreatment comparisontreatment researchtreatment responsetreatment strategyunsupervised learningworking group
项目摘要
Posttraumatic stress disorder (PTSD) is a highly prevalent and debilitating disorder. Despite efforts to
characterize the pathophysiology of PTSD and its heterogenity, no objective biomarker have been established
to aid in diagnosis, and prediction of treatment response. This K01 presents a program for research and training
that will support the applicant on a path towards becoming an independent investigator, focused on utilizing a
data-driven computational approach and machine learning techniques to identify multimodal neural biomarkers
of PTSD (supervised) and multimodal biotypes of PTSD (unsupervised) and explore whether such biotypes could
be used to predict response to prolonged exposure (PE), the first line treatment for PTSD. The training plan
builds on the candidate’s prior training and experience and capitalizes on a mentorship team and a research
environment to foster development of the candidate’s expertise in 1) the neural and behavioral basis of PTSD
and anxiety disorders; 2) multimodal data fusion analysis and latent dimension interpretation with data-driven
computational approaches and data reproducibility; and 3) patient-oriented translational research in anxiety
disorders. This research project will apply both supervised and unsupervised machine learning techniques on
multimodal MRI data from the largest existing PTSD dataset (N~3000 from the ENIGMA-PTSD working group).
Biotypes identified from this large dataset will then be extended to clinical treatment data. The results of the
proposed research will be vital to aid in finding neural biomarkers of PTSD and better predict different treatment
outcomes through different biotype targets and will lead to a future R01 grant examining brain-symptoms
association across anxiety and trauma-related disorders, and to use the newly identified PTSD biotypes to inform
different treatment outcomes in a following R61/33. Together, the research and training experiences and
expertise developed through this K01 award will support the applicant’s transition to research independence and
ensure the applicant becomes a leading authority in the application of data-driven computational approaches in
psychiatry research, and provide the basis for future NIMH grants to explore biotypes from multimodal brain
imaging using data-driven computational approaches across anxiety-related disorders.
创伤后应激障碍(PTSD)是一种高度流行和衰弱的疾病。尽管努力
描述PTSD的病理生理学及其异质性,尚未建立客观的生物标志物
以帮助诊断和预测治疗反应。本K 01提出了一个研究和培训计划
这将有助于申请人成为独立调查员,专注于利用
识别多模态神经生物标志物的数据驱动的计算方法和机器学习技术
的PTSD(监督)和多模式生物型的PTSD(无监督),并探讨这些生物型是否可以
用于预测对长期暴露(PE)的反应,这是PTSD的一线治疗。培训计划
建立在候选人之前的培训和经验,并利用导师团队和研究
环境,以促进候选人在1)创伤后应激障碍的神经和行为基础方面的专业知识发展
和焦虑症; 2)多模态数据融合分析和潜在维度解释与数据驱动
计算方法和数据再现性; 3)以患者为导向的焦虑转化研究
紊乱该研究项目将监督和无监督机器学习技术应用于
来自最大的现有PTSD数据集的多模态MRI数据(来自ENIGMA-PTSD工作组的N~3000)。
从这个大型数据集中识别的生物型将扩展到临床治疗数据。的结果
拟议中的研究对于帮助寻找PTSD的神经生物标志物和更好地预测不同的治疗方法至关重要
通过不同的生物型目标的结果,并将导致未来的R 01赠款检查大脑症状
焦虑和创伤相关疾病之间的联系,并使用新发现的PTSD生物型来告知
在随后的R61/33中的不同治疗结局。总之,研究和培训经验,
通过这个K 01奖开发的专业知识将支持申请人向研究独立性的过渡,
确保申请人成为数据驱动计算方法应用的领先权威,
精神病学研究,并为未来NIMH赠款探索多模态大脑的生物型提供基础
使用数据驱动的计算方法对焦虑相关疾病进行成像。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xi Zhu其他文献
Xi Zhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xi Zhu', 18)}}的其他基金
Identification of Distinct Multimodal Biotypes of PTSD Using Data Driven Approach: A Multisite Big Data Study
使用数据驱动方法识别 PTSD 的独特多模式生物型:多站点大数据研究
- 批准号:
10521278 - 财政年份:2020
- 资助金额:
$ 17.59万 - 项目类别:
Connected Cancer Care: EHR Communication Networks in Virtual Cancer Care Teams
互联癌症护理:虚拟癌症护理团队中的 EHR 通信网络
- 批准号:
9901453 - 财政年份:2019
- 资助金额:
$ 17.59万 - 项目类别:
Pre-Training Intervention for Expedited TeamSTEPPS Implementation in Critical Access Hospitals
在关键医院快速实施 TeamSTEPPS 的预培训干预
- 批准号:
8951513 - 财政年份:2015
- 资助金额:
$ 17.59万 - 项目类别:
Pre-Training Intervention for Expedited TeamSTEPPS Implementation in Critical Access Hospitals
在关键医院快速实施 TeamSTEPPS 的预培训干预
- 批准号:
9096717 - 财政年份:2015
- 资助金额:
$ 17.59万 - 项目类别:
相似海外基金
ADVANCED DEVELOPMENT OF LQ A LIPOSOME-BASED SAPONIN-CONTAINING ADJUVANT FOR USE IN PANSARBECOVIRUS VACCINES
用于 Pansarbecovirus 疫苗的 LQ A 脂质体含皂苷佐剂的先进开发
- 批准号:
10935820 - 财政年份:2023
- 资助金额:
$ 17.59万 - 项目类别:
ADVANCED DEVELOPMENT OF BBT-059 AS A RADIATION MEDICAL COUNTERMEASURE FOR DOSING UP TO 48H POST EXPOSURE"
BBT-059 的先进开发,作为辐射医学对策,可在暴露后 48 小时内进行给药”
- 批准号:
10932514 - 财政年份:2023
- 资助金额:
$ 17.59万 - 项目类别:
Advanced Development of a Combined Shigella-ETEC Vaccine
志贺氏菌-ETEC 联合疫苗的先进开发
- 批准号:
10704845 - 财政年份:2023
- 资助金额:
$ 17.59万 - 项目类别:
Advanced development of composite gene delivery and CAR engineering systems
复合基因递送和CAR工程系统的先进开发
- 批准号:
10709085 - 财政年份:2023
- 资助金额:
$ 17.59万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10409385 - 财政年份:2022
- 资助金额:
$ 17.59万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10710595 - 财政年份:2022
- 资助金额:
$ 17.59万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10630975 - 财政年份:2022
- 资助金额:
$ 17.59万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE CANDIDATE FOR STAPHYLOCOCCUS AUREUS INFECTION
金黄色葡萄球菌感染候选疫苗的高级开发
- 批准号:
10710588 - 财政年份:2022
- 资助金额:
$ 17.59万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10788051 - 财政年份:2022
- 资助金额:
$ 17.59万 - 项目类别: