Identification of Distinct Multimodal Biotypes of PTSD Using Data Driven Approach: A Multisite Big Data Study

使用数据驱动方法识别 PTSD 的独特多模式生物型:多站点大数据研究

基本信息

项目摘要

Posttraumatic stress disorder (PTSD) is a highly prevalent and debilitating disorder. Despite efforts to characterize the pathophysiology of PTSD and its heterogenity, no objective biomarker have been established to aid in diagnosis, and prediction of treatment response. This K01 presents a program for research and training that will support the applicant on a path towards becoming an independent investigator, focused on utilizing a data-driven computational approach and machine learning techniques to identify multimodal neural biomarkers of PTSD (supervised) and multimodal biotypes of PTSD (unsupervised) and explore whether such biotypes could be used to predict response to prolonged exposure (PE), the first line treatment for PTSD. The training plan builds on the candidate’s prior training and experience and capitalizes on a mentorship team and a research environment to foster development of the candidate’s expertise in 1) the neural and behavioral basis of PTSD and anxiety disorders; 2) multimodal data fusion analysis and latent dimension interpretation with data-driven computational approaches and data reproducibility; and 3) patient-oriented translational research in anxiety disorders. This research project will apply both supervised and unsupervised machine learning techniques on multimodal MRI data from the largest existing PTSD dataset (N~3000 from the ENIGMA-PTSD working group). Biotypes identified from this large dataset will then be extended to clinical treatment data. The results of the proposed research will be vital to aid in finding neural biomarkers of PTSD and better predict different treatment outcomes through different biotype targets and will lead to a future R01 grant examining brain-symptoms association across anxiety and trauma-related disorders, and to use the newly identified PTSD biotypes to inform different treatment outcomes in a following R61/33. Together, the research and training experiences and expertise developed through this K01 award will support the applicant’s transition to research independence and ensure the applicant becomes a leading authority in the application of data-driven computational approaches in psychiatry research, and provide the basis for future NIMH grants to explore biotypes from multimodal brain imaging using data-driven computational approaches across anxiety-related disorders.
创伤后应激障碍(PTSD)是一种非常普遍且使人衰弱的疾病。尽管努力

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xi Zhu其他文献

Xi Zhu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xi Zhu', 18)}}的其他基金

Identification of Distinct Multimodal Biotypes of PTSD Using Data Driven Approach: A Multisite Big Data Study
使用数据驱动方法识别 PTSD 的独特多模式生物型:多站点大数据研究
  • 批准号:
    10317107
  • 财政年份:
    2020
  • 资助金额:
    $ 17.59万
  • 项目类别:
Connected Cancer Care: EHR Communication Networks in Virtual Cancer Care Teams
互联癌症护理:虚拟癌症护理团队中的 EHR 通信网络
  • 批准号:
    9901453
  • 财政年份:
    2019
  • 资助金额:
    $ 17.59万
  • 项目类别:
Pre-Training Intervention for Expedited TeamSTEPPS Implementation in Critical Access Hospitals
在关键医院快速实施 TeamSTEPPS 的预培训干预
  • 批准号:
    8951513
  • 财政年份:
    2015
  • 资助金额:
    $ 17.59万
  • 项目类别:
Pre-Training Intervention for Expedited TeamSTEPPS Implementation in Critical Access Hospitals
在关键医院快速实施 TeamSTEPPS 的预培训干预
  • 批准号:
    9096717
  • 财政年份:
    2015
  • 资助金额:
    $ 17.59万
  • 项目类别:

相似海外基金

ADVANCED DEVELOPMENT OF LQ A LIPOSOME-BASED SAPONIN-CONTAINING ADJUVANT FOR USE IN PANSARBECOVIRUS VACCINES
用于 Pansarbecovirus 疫苗的 LQ A 脂质体含皂苷佐剂的先进开发
  • 批准号:
    10935820
  • 财政年份:
    2023
  • 资助金额:
    $ 17.59万
  • 项目类别:
ADVANCED DEVELOPMENT OF BBT-059 AS A RADIATION MEDICAL COUNTERMEASURE FOR DOSING UP TO 48H POST EXPOSURE"
BBT-059 的先进开发,作为辐射医学对策,可在暴露后 48 小时内进行给药”
  • 批准号:
    10932514
  • 财政年份:
    2023
  • 资助金额:
    $ 17.59万
  • 项目类别:
Advanced Development of a Combined Shigella-ETEC Vaccine
志贺氏菌-ETEC 联合疫苗的先进开发
  • 批准号:
    10704845
  • 财政年份:
    2023
  • 资助金额:
    $ 17.59万
  • 项目类别:
Advanced development of composite gene delivery and CAR engineering systems
复合基因递送和CAR工程系统的先进开发
  • 批准号:
    10709085
  • 财政年份:
    2023
  • 资助金额:
    $ 17.59万
  • 项目类别:
Advanced Development of Gemini-DHAP
Gemini-DHAP的高级开发
  • 批准号:
    10760050
  • 财政年份:
    2023
  • 资助金额:
    $ 17.59万
  • 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
  • 批准号:
    10409385
  • 财政年份:
    2022
  • 资助金额:
    $ 17.59万
  • 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
  • 批准号:
    10710595
  • 财政年份:
    2022
  • 资助金额:
    $ 17.59万
  • 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
  • 批准号:
    10630975
  • 财政年份:
    2022
  • 资助金额:
    $ 17.59万
  • 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE CANDIDATE FOR STAPHYLOCOCCUS AUREUS INFECTION
金黄色葡萄球菌感染候选疫苗的高级开发
  • 批准号:
    10710588
  • 财政年份:
    2022
  • 资助金额:
    $ 17.59万
  • 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
  • 批准号:
    10788051
  • 财政年份:
    2022
  • 资助金额:
    $ 17.59万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了