pathQTL: Integrative Multi-Omics Causal Inference of Molecular Mechanisms Leading to Neuropsychiatric Illness
pathQTL:导致神经精神疾病的分子机制的综合多组学因果推断
基本信息
- 批准号:10318952
- 负责人:
- 金额:$ 46.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-12-10 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:AdultAffectAlzheimer&aposs DiseaseBayesian ModelingBioconductorBiologicalBiologyBrainBrain regionCellsCellular MorphologyChromatinClustered Regularly Interspaced Short Palindromic RepeatsComplexComputer ModelsComputer softwareComputing MethodologiesDataData SetDevelopmentDiseaseEngineeringEpigenetic ProcessGene ExpressionGenesGeneticGenetic VariationGenomeGenotypeGoalsHumanIndividualLightLinkLoveMajor Depressive DisorderMeasuresMediatingModelingMolecularMorphologyMultiomic DataNeuronsNonsense MutationPathogenesisPathway interactionsPhenotypeProbabilityQuantitative Trait LociRegulator GenesRegulatory ElementRegulatory PathwayRiskSchizophreniaStatistical DistributionsStreamStructureSystemTestingTherapeutic EffectTimeUpdateValidationVariantViralVisualizationWorkbasebrain abnormalitiescausal modelcell typecostdirectional celldisorder riskepigenomeexperimental studyfetalgenetic associationgenetic variantgenome wide association studygenomic locushistone modificationinhibitormultiple datasetsmultiple omicsnerve stem cellneurogeneticsneuropsychiatric disorderneuropsychiatrynovelopen sourceoverexpressionrisk variantskillsstatisticssuccesstherapeutic targettooltraittranscriptomeuser-friendlyweb interface
项目摘要
Project Summary
A multitude of common genetic variants influencing risk for neuropsychiatric disorders (e.g., schizophrenia,
major depressive disorder, and Alzheimer’s disease) have recently been identified and replicated, providing a
foothold into the causes of these disorders. The critical next step in neuropsychiatric genetics is to move from a
risk locus in the genome to an understanding of how this genetic variation influences molecules, cells, and
circuits of the brain, leading to complex disorders. Many datasets, including those generated by our own labs,
have established direct links between genotype and human brain traits at multiple levels of biology (molecular:
chromatin accessibility, expression; cellular: morphology; circuit: gross brain structure), termed quantitative trait
loci (QTLs). Here, we will integrate QTLs across multiple levels of biology in order to statistically prioritize
causal pathways by which genetic variation creates risk for complex neuropsychiatric disorders. Causal
modeling goes well beyond previous co-localization work, as it allows the prioritization of expensive functional
validation experiments for cellular or molecular changes that are a cause of the disorder, rather than those that
are a consequence or independent of the disorder. It additionally allows inference of key experimental
parameters including cell-type and developmental time period. Finally, causal inference when combined across
multiple levels of biology and multiple disorder risk loci allows for assessment of convergence at a biological
level, cell-type, or developmental time period, which is critical information for therapeutic targeting. We will
leverage the computational and statistical frameworks of Bayesian probabilistic networks and causal inference
in a new framework that utilizes association summary statistics, as well-powered multi-level data collected on
the same individuals is almost always infeasible. Subsequently, we will experimentally validate the molecular
predictions of our model using epigenetic engineering in primary human neural progenitor cells, and in turn
revising the computational models. Prioritizing causal molecular pathways of disorder associated variants, and
identifying the relevant cell-type and developmental stage will increase the success rate of validation
experiments and shed light on mechanisms of neuropsychiatric disorders in an unbiased manner.
项目摘要
影响神经精神障碍风险的多种常见基因变异(例如,精神分裂症,
严重抑郁障碍和阿尔茨海默病)最近被识别和复制,提供了一种
以此为立足点来研究这些疾病的原因。神经精神病学遗传学的关键下一步是从
了解这种遗传变异如何影响分子、细胞和
大脑的循环,导致复杂的紊乱。许多数据集,包括那些由我们自己的实验室生成的数据集,
在多个生物学水平上建立了基因和人脑特征之间的直接联系(分子:
染色质可及性,表达;细胞:形态;回路:大脑皮层结构),称为数量性状
座位(QTL)。在这里,我们将整合多个生物学水平的QTL,以便在统计上区分优先顺序
基因变异造成复杂神经精神疾病风险的因果途径。因果关系
建模远远超越了以前的协同本地化工作,因为它允许对昂贵的功能
对引起疾病的细胞或分子变化的验证实验,而不是那些
是无序的结果或独立于无序。它还允许对关键实验进行推断
参数包括细胞类型和发育时间。最后,因果推论结合在一起时
多个水平的生物学和多个紊乱风险位点允许评估在生物学
水平、细胞类型或发育时间,这是治疗靶向的关键信息。我们会
利用贝叶斯概率网络和因果推理的计算和统计框架
在利用关联摘要统计信息的新框架中,以及在
同样的个体几乎总是不可行的。随后,我们将对该分子进行实验验证
在原代人类神经前体细胞中使用表观遗传工程预测我们的模型,并反过来
修改计算模型。排列紊乱相关变异的原因分子途径的优先顺序,以及
识别相关的细胞类型和发育阶段将提高验证的成功率
实验,并以公正的方式阐明神经精神障碍的机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Isaiah Love其他文献
Michael Isaiah Love的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Isaiah Love', 18)}}的其他基金
Systematic in vivo characterization of disease-associated regulatory variants
疾病相关调控变异的系统体内表征
- 批准号:
10472058 - 财政年份:2021
- 资助金额:
$ 46.89万 - 项目类别:
Systematic in vivo characterization of disease-associated regulatory variants
疾病相关调控变异的系统体内表征
- 批准号:
10296745 - 财政年份:2021
- 资助金额:
$ 46.89万 - 项目类别:
Systematic in vivo characterization of disease-associated regulatory variants
疾病相关调控变异的系统体内表征
- 批准号:
10631225 - 财政年份:2021
- 资助金额:
$ 46.89万 - 项目类别:
A Modular Framework for Accurate, Efficient, and Reproducible Analysis of RNA-Seq Data
用于准确、高效和可重复分析 RNA-Seq 数据的模块化框架
- 批准号:
10170579 - 财政年份:2020
- 资助金额:
$ 46.89万 - 项目类别:
A Modular Framework for Accurate, Efficient, and Reproducible Analysis of RNA-Seq Data
用于准确、高效和可重复分析 RNA-Seq 数据的模块化框架
- 批准号:
10238765 - 财政年份:2020
- 资助金额:
$ 46.89万 - 项目类别:
A Modular Framework for Accurate, Efficient, and Reproducible Analysis of RNA-Seq Data
用于准确、高效和可重复分析 RNA-Seq 数据的模块化框架
- 批准号:
10440402 - 财政年份:2020
- 资助金额:
$ 46.89万 - 项目类别:
pathQTL: Integrative Multi-Omics Causal Inference of Molecular Mechanisms Leading to Neuropsychiatric Illness
pathQTL:导致神经精神疾病的分子机制的综合多组学因果推断
- 批准号:
10550143 - 财政年份:2018
- 资助金额:
$ 46.89万 - 项目类别:
pathQTL: Integrative Multi-Omics Causal Inference of Molecular Mechanisms Leading to Neuropsychiatric Illness
pathQTL:导致神经精神疾病的分子机制的综合多组学因果推断
- 批准号:
10066367 - 财政年份:2018
- 资助金额:
$ 46.89万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 46.89万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 46.89万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 46.89万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 46.89万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 46.89万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 46.89万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 46.89万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 46.89万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 46.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 46.89万 - 项目类别:
Studentship