Manipulating DNA Damage-response Signaling for the Treatment of Type 1 Diabetes
操纵 DNA 损伤反应信号传导治疗 1 型糖尿病
基本信息
- 批准号:10319938
- 负责人:
- 金额:$ 44.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:Activated LymphocyteAcuteAddressAllogenicAmputationAntigensApoptoticAutoantigensAutoimmune DiseasesBeta CellBlindnessBlood GlucoseCD8-Positive T-LymphocytesCD8B1 geneCHEK1 geneCHEK2 geneCell CountCell Cycle CheckpointCell DeathCellsChemosensitizationChildClinicalClinical DataClinical TrialsDNA DamageDataDiabetes MellitusDiseaseDisease remissionDrug TargetingDrug usageEquilibriumEragrostisExhibitsFactor VFutureGamma-H2AXGenetic TranscriptionGenomicsHarvestHourHumanHyperglycemiaImmuneImmune System DiseasesImmune TargetingImmune mediated destructionImmune responseImmune systemImmunityImmunotherapyImpairmentInbred NOD MiceIncidenceIndividualInfectionInsulinInsulin-Dependent Diabetes MellitusIslets of LangerhansIslets of Langerhans TransplantationKidney DiseasesLeadLifeLymphocyteLymphocyte BiologyMDM2 geneMalignant NeoplasmsMemoryMolecular Mechanisms of ActionMolecular TargetMonitorMusNeuropathyPancreasPathogenicityPathologicPatientsPharmaceutical PreparationsPhosphorylationPopulationPropertyPublishingRegulatory T-LymphocyteRoleSamplingSignal PathwaySignal TransductionSpleenStressStrokeStructure of beta Cell of isletT memory cellT-LymphocyteTP53 geneTestingTherapeuticTissuesToxic effectTransplantation ToleranceTreatment CostVascular Diseasesautoreactivitybaseblood glucose regulationdiabetogeniceffector T cellefficacy testingexperimental studyfightinggenetic risk factorglucose monitorimmunoregulationin vivoinsightinsulin dependent diabetes mellitus onsetisletlymph nodesnon-diabeticnovelnovel therapeuticspre-clinicalpreservationpreventresponsetherapeutic targetvaccine-induced immunityyoung adult
项目摘要
Abstract
Type 1 diabetes (T1D) is a common autoimmune disease in children and young adults. T1D presents
as acute onset hyperglycemia resulting from the immune-mediated destruction of insulin-producing pancreatic
beta cells. The central pathogenic driver of T1D is the beta cell antigen-specific (ag.-sp.) T cell. There is no durable
cure for T1D; the sole and costly treatment for T1D remains daily insulin replacement. Even with vigilant glucose
monitoring and control, T1D patients still suffer a host of life-threatening sequalae including macro- and micro-
vasculopathies, neuropathy, nephropathy, amputations, stroke, and blindness. While progress has been made in
(i) producing and delivering insulin, (ii) monitoring blood glucose, (iii) identifying autoantigens, (iv) defining
genetic risk factors, (v) understanding underlying immune dysfunction, and (vi) producing and harvesting
pancreatic islet cells for transplant, the most intractable barrier remains our inability to remove or control islet
ag.-sp. T cells, without which the promise of preventing/curing T1D will likely fail.
To surmount this critical barrier, we devised the means to eliminate diabetogenic T cells from
the adaptive immune repertoire. In fact, when applied to non-obese diabetic (NOD) mice with spontaneous
new-onset T1D, we observe (i) a striking prolongation of the remission or “honeymoon” period, (ii) a significant
reduction in beta cell-specific CD4+ and CD8+ T cells, (iii) a significant preservation of beta cells, and (iv) a highly
significant reduction (78%) in the number of NOD mice that transit to overt diabetes.
The premise: As T cells toggle between distinct states – naïve, activated effector, quiescent and activated
memory – they exhibit ineluctable properties that we can precisely target. This is particularly true of activated
effector CD4+ and CD8+ T cells (Teff). Unlike their counterparts, Teff cells divide rapidly – at a rate of once every
5-6 hours in vivo – and exhibit an intrinsic DNA damage response (DDR) that places them on the edge of
apoptotic cell death. We hypothesize (i) that this unique aspect of lymphocyte biology lead to genomic stress
in acutely activated lymphocytes and (ii) that manipulation of DDR signaling pathways allows for selective
therapeutic targeting of pathological T cells. Consistent with these hypotheses, we find that both mouse and
human Teff cells display a pronounced DDR, as evidenced by DNA damage, phospho-ser139 H2AX (γH2AX),
and phosphorylation of ATM, CHK2, and p53. Moreover, we find that novel drugs that potentiate p53 (via
inhibition of MDM2) or impair cell cycle checkpoints (via inhibition of CHK1/2 or WEE1) lead to the selective
elimination of pathological Teff cells in vivo when given during a prescribed therapeutic window. In combination
of these compounds – which we termed “p53 potentiation with checkpoint abrogation” (PPCA) – display clear
therapeutic benefit, targeting pathological T cells but does not naive, regulatory, or quiescent memory T-cell
pools, and has a modest nonimmune toxicity profile. These results, recently published, (PNAS 2017,
PMC5474825) suggest a novel and tractable clinical strategy for a highly selective form of immune therapy that
is (i) specific for both CD4+ and CD8+ auto-reactive Teff cells, (ii) minimally or non-genotoxic, and (iii)
markedly better tolerated than current approaches. Importantly, this approach does not alter tissue-resident
Treg cell numbers; in fact, our data suggest that PPCA resets the regulatory balance in favor of Treg control of
anti-beta cell immunity.
Based on our preliminary and published data, we propose three inter-related hypotheses: (i) that
PPCA has a distinct mechanism of action that eliminates Teff cells while sparing Treg cells, thereby re-
establishing a localized regulatory balance; (ii) that PPCA can target the control of both auto- and allogeneic T
cells, thereby allowing for sustained transplantation tolerance to islets, and (iii) that PPCA can preferentially
target islet ag.-sp. activated human T cells in individuals with T1D while sparing the memory compartment.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JONATHAN David KATZ其他文献
JONATHAN David KATZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JONATHAN David KATZ', 18)}}的其他基金
Manipulating DNA Damage-response Signaling for the Treatment of Type 1 Diabetes
操纵 DNA 损伤反应信号传导治疗 1 型糖尿病
- 批准号:
10091310 - 财政年份:2019
- 资助金额:
$ 44.68万 - 项目类别:
Dissecting Dendritic Cell Function in Autoimmune Diabetes
剖析自身免疫性糖尿病中树突状细胞的功能
- 批准号:
7741266 - 财政年份:2009
- 资助金额:
$ 44.68万 - 项目类别:
Dissecting Dendritic Cell Function in Autoimmune Diabetes
剖析自身免疫性糖尿病中树突状细胞的功能
- 批准号:
8119440 - 财政年份:2009
- 资助金额:
$ 44.68万 - 项目类别:
Dissecting Dendritic Cell Function in Autoimmune Diabetes
剖析自身免疫性糖尿病中树突状细胞的功能
- 批准号:
8308662 - 财政年份:2009
- 资助金额:
$ 44.68万 - 项目类别:
Dissecting Dendritic Cell Function in Autoimmune Diabetes
剖析自身免疫性糖尿病中树突状细胞的功能
- 批准号:
8517102 - 财政年份:2009
- 资助金额:
$ 44.68万 - 项目类别:
Using Genomics to Understand Autoimmune Diabetes
利用基因组学了解自身免疫性糖尿病
- 批准号:
7055244 - 财政年份:2002
- 资助金额:
$ 44.68万 - 项目类别:
Using Genomics to Understand Autoimmune Diabetes
利用基因组学了解自身免疫性糖尿病
- 批准号:
6637874 - 财政年份:2002
- 资助金额:
$ 44.68万 - 项目类别:
Using Genomics to Understand Autoimmune Diabetes
利用基因组学了解自身免疫性糖尿病
- 批准号:
6889265 - 财政年份:2002
- 资助金额:
$ 44.68万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 44.68万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 44.68万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 44.68万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 44.68万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 44.68万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 44.68万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 44.68万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 44.68万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 44.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 44.68万 - 项目类别:
Operating Grants














{{item.name}}会员




