Characterization of Alternative Polyadenylation in Alzheimer's Disease
阿尔茨海默病中替代多腺苷酸化的表征
基本信息
- 批准号:10321676
- 负责人:
- 金额:$ 8.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAlzheimer&aposs DiseaseAlzheimer’s disease biomarkerArchivesBinding SitesBiological MarkersBiologyBiomedical ResearchBrain DiseasesClinicalClinical MedicineCommunitiesComputational BiologyDataDatabasesDementiaDermalDevelopmentDiseaseDisorientationDrug TargetingEquilibriumEventFoundationsGenomicsGenotypeGlutamatesGoalsHumanImpaired cognitionIndividualInvestigationKnowledgeLungMalignant NeoplasmsMedicalMemory LossMetabolic DiseasesMethylationMolecularMultiomic DataNeural Network SimulationPatient-Focused OutcomesPharmaceutical PreparationsPhasePolyadenylationProcessPrognostic MarkerQuantitative Trait LociRNARNA SplicingResearchRoleSamplingScienceSenile PlaquesSystems BiologyTechniquesTechnologyTherapeuticTrainingVariantVisualizationbasecholinergicclinically relevantcognitive functioncomputer frameworkdata resourcedata-driven modeldeep learningdeep neural networkdiagnostic biomarkereffective therapygenetic variantgenome editinggenome-widehuman diseaseimprovedinnovationinsightlanguage impairmentlarge scale dataneuroinflammationnovelnovel therapeutic interventionpotential biomarkerprecision medicinepredictive modelingtau Proteinstherapeutic targettherapy developmenttraittranscriptometranscriptome sequencingtranscriptomicsuser-friendly
项目摘要
Abstract
Alzheimer's disease (AD) is a slowly progressive brain disorder characterized by cognitive decline, irreversible
memory loss, disorientation, and language impairment. Recent advances in genomic technologies and the
explosive genomic information related to disease have accelerated the convergence of discovery science with
clinical medicine. We aim to utilize cutting-edge techniques in computational biology, RNA biology, and
systems biology to identify novel prognostic and diagnostic biomarkers and to develop innovative therapeutic
strategies for AD. We will establish a comprehensive archive of human polyadenylation sites by combining
various APA databases. We will train a reliable deep neural network (DNN) model by considering both cis ad
trans factors, and then apply this DNN prediction model to characterize APA events in AD samples across
several AD consortia (Aim 1.1). We will develop highly efficient and accurate approaches based on deep
learning to identify apaQTLs in order to maximize the utility of genotyping data to understand the functional
effects of genetic variants in AD. We will perform integrative analysis with multi-omics data generated by other
projects to understand the regulatory network, aiming to provide additional evidence for functional
interpretation of apaQTLs in AD (Aim 1.2). We will perform integrative analysis with our established rigorous
computational approaches to identify APA events associated with AD traits, in order to identify novel prognostic
and diagnostic biomarkers for AD (Aim 2.1). To facilitate the utilization of large-scale data by the broad
biomedical community, we will develop a comprehensive data resource to provide a computational framework
that enables user-friendly interactive exploration and visualization of the biomedical significance of APA events
(Aim 2.2). We expect to build a critical foundation to demonstrate that APA events represent novel types of
biomarkers and serve as promising therapeutic targets to improve patient outcomes. Our proposed research
could pave the innovative way for aiding precision medicine because we will develop highly innovative
computational framework based on deep learning to identify APA events and perform apaQTL analysis to
identify a novel class of APA-based biomarkers and therapeutic targets. The proposed research is of high
significance because it will fundamentally advance our knowledge about the molecular basis of AD and
contribute to a broader understanding of the overall complexity of AD.
摘要
阿尔茨海默病(AD)是一种进展缓慢的大脑疾病,其特征是认知能力下降,不可逆转
记忆力丧失、定向障碍和语言障碍。基因组技术的最新进展和研究进展
与疾病相关的爆炸性基因组信息加速了发现科学与
临床医学。我们的目标是利用计算生物学、RNA生物学和
系统生物学识别新的预后和诊断生物标记物并开发创新的治疗方法
应对AD的策略。我们将建立一个全面的人类多腺苷酸化位点档案,通过结合
各种APA数据库。我们将训练一个可靠的深度神经网络(DNN)模型,通过同时考虑顺、反两个因素
反式因素,然后应用该DNN预测模型来表征AD样本中的APA事件
几个AD财团(目标1.1)。我们将开发基于深度的高效和准确的方法
学习识别apaQTL,以便最大限度地利用基因分型数据来了解功能
遗传变异在AD中的作用。我们将对其他公司生成的多组学数据进行综合分析
了解监管网络的项目,旨在为以下功能提供额外证据
阿尔茨海默病中apaQTL的解释(目标1.2)。我们将根据我们已建立的严谨标准进行综合分析
识别与AD特征相关的APA事件的计算方法,以便识别新的预后
和AD的诊断生物标志物(AIM 2.1)。方便广大公众利用大规模数据
生物医学界,我们将开发一个全面的数据资源,提供一个计算框架
这使得能够以用户友好的交互方式探索和可视化APA事件的生物医学意义
(目标2.2)。我们希望建立一个关键的基础,以证明APA事件代表了
生物标志物,并作为有希望的治疗靶点,以改善患者的预后。我们建议的研究
可以为助力精准医疗铺平创新之路,因为我们将发展高度创新的
基于深度学习的识别APA事件和执行apaQTL分析的计算框架
确定一类新的基于APA的生物标记物和治疗靶点。提出的研究具有较高的研究价值。
因为它将从根本上提高我们对阿尔茨海默病的分子基础和
有助于更广泛地了解AD的整体复杂性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leng Han其他文献
Leng Han的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leng Han', 18)}}的其他基金
Systematic Characterization of Small Nucleolar RNAs in Cancer
癌症中小核仁 RNA 的系统表征
- 批准号:
10914508 - 财政年份:2023
- 资助金额:
$ 8.11万 - 项目类别:
MolQTL: A comprehensive resource for molecular quantitative trait loci in human cancer.
MolQTL:人类癌症分子数量性状位点的综合资源。
- 批准号:
10593169 - 财政年份:2021
- 资助金额:
$ 8.11万 - 项目类别:
MolQTL: A comprehensive resource for molecular quantitative trait loci in human cancer.
MolQTL:人类癌症分子数量性状位点的综合资源。
- 批准号:
10427368 - 财政年份:2021
- 资助金额:
$ 8.11万 - 项目类别:
MolQTL: A comprehensive resource for molecular quantitative trait loci inhuman cancer.
MolQTL:人类癌症分子数量性状位点的综合资源。
- 批准号:
10933833 - 财政年份:2021
- 资助金额:
$ 8.11万 - 项目类别:
MolQTL: A comprehensive resource for molecular quantitative trait loci in human cancer.
MolQTL:人类癌症分子数量性状位点的综合资源。
- 批准号:
10181442 - 财政年份:2021
- 资助金额:
$ 8.11万 - 项目类别:
Systematic Characterization of Small Nucleolar RNAs in Cancer
癌症中小核仁 RNA 的系统表征
- 批准号:
10277525 - 财政年份:2021
- 资助金额:
$ 8.11万 - 项目类别:
Characterization of Alternative Polyadenylation in Alzheimer's Disease
阿尔茨海默病中替代多腺苷酸化的表征
- 批准号:
10363157 - 财政年份:2021
- 资助金额:
$ 8.11万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 8.11万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 8.11万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 8.11万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 8.11万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 8.11万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 8.11万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 8.11万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 8.11万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 8.11万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 8.11万 - 项目类别:
Continuing Grant














{{item.name}}会员




