COVID-19 detection through scent analysis with a compact GC device
使用紧凑型 GC 设备通过气味分析检测 COVID-19
基本信息
- 批准号:10321006
- 负责人:
- 金额:$ 94.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-21 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:AgreementAlgorithmsBiological AssayBiological MarkersBiotechnologyBloodBreath TestsCOVID-19COVID-19 detectionCOVID-19 diagnosisCOVID-19 diagnosticCOVID-19 monitoringCOVID-19 pandemicCOVID-19 patientCOVID-19 prognosisCessation of lifeClinicalCodeCritical CareDataData AnalysesData Coordinating CenterData ScienceData ScientistDevicesDiagnosisDimensionsDiseaseEngineeringEnsureGas ChromatographyGeneticHealthHospitalsHumanHuman bodyImmunologicsIn SituInstitutesInstitutional Review BoardsInterventionLicensingMachine LearningMechanical ventilationMedicalMedicineMethodsMichiganMonitorParticipantPatientsPatternPerformancePersonsPharmacotherapyProcessProductionRADx RadicalResearchResourcesSARS-CoV-2 infectionSARS-CoV-2 negativeSARS-CoV-2 positiveSalivaSamplingSavingsServicesSeveritiesSpeedTechnologyTestingTimeTrainingUniversitiesValidationVirus DiseasesWorkacute hypoxemic respiratory failureautomated algorithmbasebiomarker identificationcohortcommercializationcommunity settingcomputerized data processingcostdesignfight againstfightingglobal healthimprovedmetabolomicsmultidisciplinarynasopharyngeal swabpandemic diseasepoint of careportabilityrapid detectionrecruitscreeningsevere COVID-19two-dimensional
项目摘要
Recent studies, including ours, have suggested that breath may allow us to diagnose COVID-19 infection
and even monitor its progress. As compared to immunological and genetic based methods using sample media
like blood, nasopharyngeal swab, and saliva, breath analysis is non-invasive, simple, safe, and inexpensive; it
allows a nearly infinite amount of sample volume and can be used at the point-of-care for rapid detection.
Fundamentally, breath also provides critical metabolomics information regarding how human body responds to
virus infection and medical intervention (such as drug treatment and mechanical ventilation). The objectives of
the proposed SCENT project are: (1) to refine automated, portable, high-performance micro-gas
chromatography (GC) device and related data analysis / biomarker identification algorithms for rapid (5-6
minutes), in-situ, and sensitive (down to ppt) breath analysis and (2) to conduct breath analysis on up to 760
patients, and identify and validate the COVID-19 biomarkers in breath. Thus, in coordination with the RADx-rad
Data Coordination Center (DCC), we will complete the following specific aims.
(1) Refine 5 automated micro-GC devices to achieve higher speed and better separation capability. We
will construct 5 new automated and portable one-dimensional micro-GC devices that require only ~6 minutes of
assay time (improved from current 20 minutes) at the ppt level sensitivity (Sub-Aim 1a). Then the devices will be
upgraded to 2-dimensional micro-GC to significantly increase the separation capability (Sub-Aim 1b). In the
meantime, we will optimize and automate our existing data processing and biomarker identification algorithms
and codes to streamline the workflow so that the GC device can automatically process and analyze the data
without human intervention (Sub-Aim 1c).
(2) Identify breath biomarkers that distinguish COVID-19 positive (symptomatic and asymptomatic) and
negative patients. We will recruit a training cohort of 380 participants, including 190 COVID-19 positive patients
(95 symptomatic and 95 asymptomatic) and 190 COVID-19 negative patients from two hospitals (Michigan
Medicine – Ann Arbor and the Henry Ford Hospital – Detroit). We will conduct breath analysis using machine
learning to identify VOC patterns that match each COVID-19 diagnostic status.
(3) Validate the COVID-19 biomarkers using our refined micro-GC devices. Using the refined 2-D micro-GC
devices from Sub-Aim 1b, we will recruit a new validation cohort of 380 participants (190 COVID-19 positive
patients and 190 COVID-19 negative patients) to validate the biomarkers identified in Aim 2.
We will leverage existing engineering, data science, clinical, regulatory, and commercialization resources
throughout the project to hit our milestones, ensuring a high likelihood of rapid patient impact. Upon completion
of this work, we will have a portable micro-GC device and accompanying automated algorithms that can detect
and monitor COVID-19 status for people in a variety of clinical and community settings.
最近的研究,包括我们的研究,都表明呼吸可以让我们诊断COVID-19感染
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Portable comprehensive two-dimensional micro-gas chromatography using an integrated flow-restricted pneumatic modulator.
- DOI:10.1038/s41378-022-00452-5
- 发表时间:2022
- 期刊:
- 影响因子:7.9
- 作者:Huang, Xiaheng;Li, Maxwell Wei-hao;Zang, Wenzhe;Huang, Xiaolu;Sivakumar, Anjali Devi;Sharma, Ruchi;Fan, Xudong
- 通讯作者:Fan, Xudong
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xudong Fan其他文献
Xudong Fan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xudong Fan', 18)}}的其他基金
High performance wearable body odor sensor arrays for disease detection and monitoring
用于疾病检测和监测的高性能可穿戴体味传感器阵列
- 批准号:
10674716 - 财政年份:2022
- 资助金额:
$ 94.29万 - 项目类别:
High performance wearable body odor sensor arrays for disease detection and monitoring
用于疾病检测和监测的高性能可穿戴体味传感器阵列
- 批准号:
10425780 - 财政年份:2022
- 资助金额:
$ 94.29万 - 项目类别:
COVID-19 detection through scent analysis with a compact GC device
使用紧凑型 GC 设备通过气味分析检测 COVID-19
- 批准号:
10266206 - 财政年份:2020
- 资助金额:
$ 94.29万 - 项目类别:
Novel gas chromatography for rapid, in situ workplace hazardous VOC/VIC analysis
用于快速现场工作场所危险 VOC/VIC 分析的新型气相色谱法
- 批准号:
10171393 - 财政年份:2018
- 资助金额:
$ 94.29万 - 项目类别:
Protein interaction study In-vitro and in live cells with optofluidic lasers
使用光流控激光器进行体外和活细胞中的蛋白质相互作用研究
- 批准号:
8634300 - 财政年份:2014
- 资助金额:
$ 94.29万 - 项目类别:
Microfluidics in Biomedical Sciences Training Program
生物医学科学中的微流控培训计划
- 批准号:
9769723 - 财政年份:2005
- 资助金额:
$ 94.29万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 94.29万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 94.29万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 94.29万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 94.29万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 94.29万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 94.29万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 94.29万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 94.29万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 94.29万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 94.29万 - 项目类别:
Research Grant