Advanced machine learning algorithms that integrate multi-modal neuroimaging to quantify the heterogeneity in Alzheimer's Disease

先进的机器学习算法,集成多模式神经影像来量化阿尔茨海默病的异质性

基本信息

  • 批准号:
    10323673
  • 负责人:
  • 金额:
    $ 53.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-15 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

Abstract Alzheimer's Disease (AD) affects over 5 million Americans posing a significant burden to the community and health care system. Machine learning (ML) methods have been crucial in detecting the disease and characterizing its progression. Due to the lack of an in vivo “ground truth” diagnosis, ML approaches have typically relied on clinically derived labels and a case-control design in their search for a single imaging pattern that optimally distinguishes between the two groups in the case-control design. However, heterogeneity within clinical labels may degrade performance and interpretability. The goal of this project is to address this limitation and accurately characterize heterogeneity in preclinical and symptomatic AD. Given that age is a major risk factor for developing dementia, we will characterize healthy aging using multimodal neuroimaging data and ML in Aim 1. To this end, we propose to develop a novel unsupervised multi-view machine learning tool that can integrate information from multiple imaging modalities (i.e., structural Magnetic Resonance Imaging, and amyloid and tau sensitive Positron Emission Tomography) in a principled way. This will enable us to define the normal trajectory of age- related changes across all modalities, providing the necessary context to understand AD pathology. We will characterize AD pathology using multimodal neuroimaging data and ML in Aim 2. To this end, we propose to develop a novel semi-supervised ML framework that integrates multimodal information and derives data-driven disease dimensions. This is achieved by identifying and quantifying at the individual level imaging patterns that capture neuroanatomical and neuropathological alterations. Our approach builds on our extensive prior work on using an advanced, unsupervised multivariate pattern analysis technique, termed orthonormal projective non-negative matrix factorization, for analyzing neuroimaging data. Importantly, our project leverages two large multimodal datasets, the Knight AD Research Center (ADRC) cohort and AD Neuroimaging Initiative (ADNI), which sample participants across the continuum of AD making them ideal for investigating heterogeneity of AD pathology using advanced ML techniques. If successful, our approaches could be used for studying any brain disorder and could be readily integrated into personalized medicine strategies in the future when rich, multimodal imaging data collection will become a routine diagnostic procedure in hospitals.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aristeidis Sotiras其他文献

Aristeidis Sotiras的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aristeidis Sotiras', 18)}}的其他基金

Advanced machine learning algorithms that integrate multi-modal neuroimaging to quantify the heterogeneity in Alzheimer's Disease
先进的机器学习算法,集成多模式神经影像来量化阿尔茨海默病的异质性
  • 批准号:
    10542370
  • 财政年份:
    2021
  • 资助金额:
    $ 53.56万
  • 项目类别:

相似海外基金

Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
  • 批准号:
    495182
  • 财政年份:
    2023
  • 资助金额:
    $ 53.56万
  • 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
  • 批准号:
    2601817
  • 财政年份:
    2021
  • 资助金额:
    $ 53.56万
  • 项目类别:
    Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
  • 批准号:
    2029039
  • 财政年份:
    2020
  • 资助金额:
    $ 53.56万
  • 项目类别:
    Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
  • 批准号:
    9888417
  • 财政年份:
    2019
  • 资助金额:
    $ 53.56万
  • 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
  • 批准号:
    17K11318
  • 财政年份:
    2017
  • 资助金额:
    $ 53.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    9320090
  • 财政年份:
    2017
  • 资助金额:
    $ 53.56万
  • 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    10166936
  • 财政年份:
    2017
  • 资助金额:
    $ 53.56万
  • 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    9761593
  • 财政年份:
    2017
  • 资助金额:
    $ 53.56万
  • 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
  • 批准号:
    BB/M50306X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 53.56万
  • 项目类别:
    Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
  • 批准号:
    288272
  • 财政年份:
    2013
  • 资助金额:
    $ 53.56万
  • 项目类别:
    Miscellaneous Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了