Advanced machine learning algorithms that integrate multi-modal neuroimaging to quantify the heterogeneity in Alzheimer's Disease
先进的机器学习算法,集成多模式神经影像来量化阿尔茨海默病的异质性
基本信息
- 批准号:10542370
- 负责人:
- 金额:$ 56.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-15 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAgeAlzheimer&aposs DiseaseAlzheimer&aposs disease pathologyAmericanAmyloidAmyloid ProteinsAnatomyAutopsyBiologicalBiological MarkersBiometryBrainBrain DiseasesCerebrovascular DisordersClinicalClinical TrialsCognitionCognitiveCommunity HealthcareComplexDataData CollectionDementiaDepositionDiagnosisDiagnosticDiagnostic ProcedureDimensionsDiseaseDisease MarkerEnabling FactorsFunctional Magnetic Resonance ImagingFunctional disorderFutureGoalsHealthcare SystemsHeterogeneityHospitalsImageImage AnalysisImpaired cognitionIndividualInstitutionIntuitionLabelLettersLinkMachine LearningMagnetic Resonance ImagingMeasurementMeasuresMethodologyMethodsModalityMultimodal ImagingNational Institute on AgingNatureNeeds AssessmentNerve DegenerationNeuroanatomyNeurodegenerative DisordersNeurologyOutcomeParticipantPathologicPathologic ProcessesPathologyPatientsPatternPerformancePopulationPositioning AttributePositron-Emission TomographyProcessPrognosisRegression AnalysisResearchRisk FactorsSamplingSeveritiesSubgroupSystemTechniquesTestingTherapeuticTherapeutic InterventionTrainingUncertaintyWorkage relatedaging braincase controlcognitive changecohortcommunity burdencomorbiditydesigndisease heterogeneitydisorder subtypehealthy agingimaging modalityimprovedin vivoinnovationmachine learning algorithmmachine learning frameworkmachine learning methodmultimodal datamultimodal neuroimagingmultimodalityneuroimagingneuroinformaticsneuropathologynovelpatient stratificationpersonalized medicinepre-clinicalquantitative imagingsupervised learningtau Proteinstherapeutically effectivetoolunsupervised learning
项目摘要
Abstract
Alzheimer's Disease (AD) affects over 5 million Americans posing a significant burden to the community
and health care system. Machine learning (ML) methods have been crucial in detecting the disease and
characterizing its progression. Due to the lack of an in vivo “ground truth” diagnosis, ML approaches
have typically relied on clinically derived labels and a case-control design in their search for a single
imaging pattern that optimally distinguishes between the two groups in the case-control design.
However, heterogeneity within clinical labels may degrade performance and interpretability. The goal of
this project is to address this limitation and accurately characterize heterogeneity in preclinical and
symptomatic AD. Given that age is a major risk factor for developing dementia, we will characterize
healthy aging using multimodal neuroimaging data and ML in Aim 1. To this end, we propose to develop
a novel unsupervised multi-view machine learning tool that can integrate information from multiple
imaging modalities (i.e., structural Magnetic Resonance Imaging, and amyloid and tau sensitive Positron
Emission Tomography) in a principled way. This will enable us to define the normal trajectory of age-
related changes across all modalities, providing the necessary context to understand AD pathology. We
will characterize AD pathology using multimodal neuroimaging data and ML in Aim 2. To this end, we
propose to develop a novel semi-supervised ML framework that integrates multimodal information and
derives data-driven disease dimensions. This is achieved by identifying and quantifying at the individual
level imaging patterns that capture neuroanatomical and neuropathological alterations. Our approach
builds on our extensive prior work on using an advanced, unsupervised multivariate pattern analysis
technique, termed orthonormal projective non-negative matrix factorization, for analyzing neuroimaging
data. Importantly, our project leverages two large multimodal datasets, the Knight AD Research Center
(ADRC) cohort and AD Neuroimaging Initiative (ADNI), which sample participants across the continuum
of AD making them ideal for investigating heterogeneity of AD pathology using advanced ML techniques.
If successful, our approaches could be used for studying any brain disorder and could be readily
integrated into personalized medicine strategies in the future when rich, multimodal imaging data
collection will become a routine diagnostic procedure in hospitals.
摘要
阿尔茨海默病(AD)影响超过500万美国人,给社区造成重大负担
和医疗保健系统。机器学习(ML)方法在检测疾病方面至关重要,
描述其进展。由于缺乏体内“地面实况”诊断,ML方法
通常依赖于临床衍生的标签和病例对照设计,
在病例对照设计中最佳区分两组的成像模式。
然而,临床标签内的异质性可能会降低性能和可解释性。的目标
本项目旨在解决这一局限性,并准确表征临床前和
症状性AD鉴于年龄是发展痴呆症的主要风险因素,我们将描述
使用目标1中的多模式神经成像数据和ML进行健康老龄化。为此,我们建议制定
一种新型的无监督多视图机器学习工具,可以整合来自多个
成像模态(即,结构磁共振成像与淀粉样蛋白和tau蛋白敏感正电子
发射断层扫描)的原则。我们就能确定正常的年龄轨迹-
所有模式的相关变化,提供必要的背景,以了解AD病理学。我们
将使用目标2中的多模态神经成像数据和ML表征AD病理学。为此我们
建议开发一种新的半监督ML框架,该框架集成了多模态信息,
衍生出数据驱动的疾病维度。这是通过识别和量化个人
水平成像模式,捕捉神经解剖学和神经病理学的变化。我们的方法
建立在我们之前广泛的工作,使用先进的,无监督的多元模式分析
一种用于分析神经影像的技术,称为正交投影非负矩阵分解
数据重要的是,我们的项目利用了两个大型多模态数据集,Knight AD研究中心
(ADRC)队列和AD神经影像学倡议(ADNI),在整个连续体中对参与者进行抽样
这使得它们成为使用先进的ML技术研究AD病理学异质性的理想选择。
如果成功,我们的方法可以用于研究任何大脑疾病,并可以很容易地
未来,当丰富的多模态成像数据被整合到个性化医疗策略中时,
收集将成为医院的常规诊断程序。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aristeidis Sotiras其他文献
Aristeidis Sotiras的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aristeidis Sotiras', 18)}}的其他基金
Advanced machine learning algorithms that integrate multi-modal neuroimaging to quantify the heterogeneity in Alzheimer's Disease
先进的机器学习算法,集成多模式神经影像来量化阿尔茨海默病的异质性
- 批准号:
10323673 - 财政年份:2021
- 资助金额:
$ 56.19万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 56.19万 - 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
- 批准号:
2601817 - 财政年份:2021
- 资助金额:
$ 56.19万 - 项目类别:
Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
- 批准号:
2029039 - 财政年份:2020
- 资助金额:
$ 56.19万 - 项目类别:
Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
- 批准号:
9888417 - 财政年份:2019
- 资助金额:
$ 56.19万 - 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
- 批准号:
17K11318 - 财政年份:2017
- 资助金额:
$ 56.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 56.19万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 56.19万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 56.19万 - 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
- 批准号:
BB/M50306X/1 - 财政年份:2014
- 资助金额:
$ 56.19万 - 项目类别:
Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
- 批准号:
288272 - 财政年份:2013
- 资助金额:
$ 56.19万 - 项目类别:
Miscellaneous Programs