The neurobiology of global state transitions

全局状态转换的神经生物学

基本信息

  • 批准号:
    10326370
  • 负责人:
  • 金额:
    $ 2.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-12-01 至 2022-02-14
  • 项目状态:
    已结题

项目摘要

Project Summary Sleep has long fascinated scientists and philosophers alike. To date, the sleep field has made enormous strides towards explaining how the activity patterns recorded during sleep stages are generated. However, the transitions between wakefulness and sleep and between the stages of sleep are understudied. Sleep and wake promoting neuronal populations exhibit self-excitation and mutual inhibition12–16 which is thought to give rise to a winner-take-all strategy.17,18 This has typically been assumed to mean states of wake and sleep cannot coexist in the brain. However, from several specialized classes of species that engage in uni- hemispheric sleep, we know it is possible for part of the brain to fall asleep while another remains awake.18,19,21,22 During local sleep episodes recorded in rats, spatially restricted pockets of cortical tissue entered a slow wave rhythm of activity during behavioral wakefulness.23 Our lab and others have demonstrated that activity in the cortex undergoes state transitions during general anesthesia as well.27,28 What remains unknown is whether local state transitions are a general mechanism for transitions between consciousness and unconsciousness or if they are specific to sleep deprivation. I hypothesize that local state transitions are, in fact, a general mechanism, and, furthermore, that all global state transitions are initiated locally and propagated through the cortex. In Aim 1, I will use general anesthesia. General anesthesia and sleep are not the same, but they do share common circuitry within the brain.30-32 Preliminary data from our lab suggests that state transitions under anesthesia can be local, however, no attempt has been made to quantify this observation. In my experiments, I will build upon our published methods to create a continuous measure of brain state independently for each channel of a 3D array of electrodes. In this way, I will be able to identify the initiation of state transitions and track propagation. In Aim 2, I will use the same methods to define brain states and transitions in recordings of natural sleep and wake in freely behaving animals. By recording from the same animals with and without sleep deprivation, I will be able to address whether or not local sleep is specific to sleep deprivation. Collectively, the data collected will allow me to directly address the question of whether local state transitions are a general mechanism that spread to give rise to global state transitions. Regardless of whether sleep and anesthesia show that same results, it is essential to define transitions using the same methodology for comparison and interpretation. My results will have the potential to revolutionize the way the field thinks about sleep and anesthesia which could have profound implication for human patients who suffer from sleep disorders in which they struggle to initiate or maintain natural sleep or the millions of yearly surgical patients. This grant will provide indispensable support for a driven, aspiring scientist in an outststanding environment at the University of Pennsylvania, Perelman School of Medicine. My ultimate career goal is to become an independent researcher investigating the mechanisms of global state transitions.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brenna Shortal其他文献

Brenna Shortal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
  • 批准号:
    2244994
  • 财政年份:
    2023
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了