Mechanisms of Shear Induction of Blood-Brain Barrier Phenotypes in Human iPSC-derived Brain Endothelial Progenitors
人 iPSC 来源的脑内皮祖细胞血脑屏障表型的剪切诱导机制
基本信息
- 批准号:10328223
- 负责人:
- 金额:$ 33.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-15 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:Active Biological TransportAgonistAlzheimer&aposs DiseaseAnimalsAntibodiesAstrocytesAutomobile DrivingBiochemicalBlood - brain barrier anatomyBlood CirculationBrainBrain DiseasesBrain InjuriesCell Differentiation processCell modelCentral Nervous System DiseasesDataDevelopmentDevelopmental ProcessDiffuseDiseaseEndothelial CellsEndotheliumEpilepsyExhibitsExposure toFunctional disorderGeneticHomeostasisHumanIn VitroInduced pluripotent stem cell derived neuronsLiquid substanceMaintenanceMechanicsMediatingMetabolicMethodsModelingMolecularNeuraxisNeurological ModelsNeuronsParkinson DiseasePathway interactionsPericytesPharmacologic SubstancePhenotypePhysiologicalPhysiologyProcessPropertyProteinsRegulationReportingRoleSignal PathwaySignal TransductionStrokeStructureStudy modelsTestingTherapeuticTight JunctionsTransforming Growth Factor betaantagonistbaseblood-brain barrier functionbrain endothelial cellchemical geneticsdesigndirected differentiationendothelial stem cellimprovedin vitro Modelin vivoinduced pluripotent stem cellinhibitorinsightknock-downnervous system disorderneurovascular unitnovelpreventprogenitorprotein expressionrelating to nervous systemshear stresssmall moleculestem cell differentiationstem cell modelstem cellstooluptake
项目摘要
The blood-brain barrier (BBB) represents a physical, transport, and metabolic barrier between the bloodstream
and the brain and its function is crucial to maintain brain homeostasis. BBB dysfunction is a hallmark of many
neurological diseases and disorders. Moreover, the BBB prevents treatment of central nervous system diseases
by limiting brain uptake of small molecule and protein-based pharmaceuticals. In vitro models of the BBB provide
tools to understand BBB structure and function during development and disease and facilitate discovery of
strategies to delivery pharmaceuticals to the brain. Established in vitro BBB models often lack key physiologic
phenotypes of the in vivo BBB, however, limiting their utility. Previously, we described a defined method for
directed differentiation of human induced pluripotent stem cells (iPSCs) to brain microvascular endothelial cells
(BMECs) that comprise the BBB. These iPSC-BMECs express BBB-specific markers and exhibit barrier and
transporter properties similar to those in the BBB in vivo, albeit at reduced levels. Our preliminary data
demonstrate that application of shear flow to iPSC-BMEC progenitors induces BBB phenotypes in a p21 and
TGFβ signaling pathway dependent manner. These data motivate our central hypothesis: Shear stress
enhances development and maintenance of BBB barrier and transporter phenotypes in iPSC-BMEC
progenitors via p21 and TGFβ signaling. To test this hypothesis, we will apply shear flow to iPSCs
differentiating to BMECs at different stages of development and quantify effects of shear stress on BBB barrier
and transporter phenotypes in the resulting BMECs. We will employ genetic and biochemical inhibitors to
elucidate the roles of p21 and TGFβ pathway induction of BBB phenotypes. Based on these fundamental studies,
we will construct isogenic, neurovascular unit (NVU) models comprised of shear-conditioned iPSC-
derived BMECs, neurons, astrocytes and pericytes that will enable a better understanding of human BBB
development and disease and facilitate neurotherapeutic development. Our specific aims are:
1. Quantify the effects of shear stress applied to iPSC-BMEC progenitors on induction of BBB phenotypes.
We will assess the developmental stages at which shear induces barrier and transporter phenotypes in
differentiating iPSC-BMECs.
2. Elucidate the roles of p21 and TGFβ signaling in shear-mediated induction of BBB phenotypes in iPSC-
BMEC progenitors. We will employ chemical and genetic inhibition of p21 and TGFβ pathways to test the
necessity of these pathways in shear induction of BBB phenotypes in iPSC-BMEC progenitors.
3. Evaluate shear-conditioned iPSC-BMECs in contact and noncontact isogenic neurovascular unit models.
We will construct NVU models consisting of iPSC-BMECs differentiated in the presence of shear, and
iPSC-derived neurons, astrocytes, and pericytes, to test the hypothesis that shear application to iPSC-
BMEC progenitors will yield a high-fidelty NVU model with enhanced, sustained BBB phenotypes.
血脑屏障(BBB)代表血流之间的物理、运输和代谢屏障,
而大脑及其功能对维持大脑内环境稳定至关重要。血脑屏障功能障碍是许多
神经系统疾病和紊乱。此外,BBB阻止中枢神经系统疾病的治疗
通过限制大脑对小分子和蛋白质药物的摄取。BBB的体外模型提供了
了解发育和疾病期间BBB结构和功能的工具,并促进发现
将药物输送到大脑的策略。建立的体外BBB模型通常缺乏关键的生理学特性,
然而,体内BBB的表型限制了它们的应用。前面,我们描述了一个定义的方法,
人诱导多能干细胞(iPSC)向脑微血管内皮细胞的定向分化
(BMEC)组成BBB。这些iPSC-BMEC表达BBB特异性标志物,并表现出屏障和
转运蛋白的性质类似于体内BBB中的转运蛋白,尽管水平降低。我们的初步数据
证明对iPSC-BMEC祖细胞施加剪切流诱导p21中的BBB表型,
TGFβ信号通路依赖的方式。这些数据激发了我们的中心假设:
增强iPSC-BMEC中BBB屏障和转运蛋白表型的发育和维持
通过p21和TGFβ信号传导。为了验证这一假设,我们将剪切流应用于iPSC
区分不同发育阶段的BMEC,并量化剪切应力对BBB屏障的影响
和转运蛋白表型。我们将使用遗传和生化抑制剂,
阐明p21和TGFβ通路诱导BBB表型的作用。基于这些基础研究,
我们将构建由剪切条件iPSC组成的同基因神经血管单位(NVU)模型,
衍生的BMEC,神经元,星形胶质细胞和周细胞,这将使我们能够更好地了解人类BBB
发展和疾病,并促进神经治疗的发展。我们的具体目标是:
1.量化施加于iPSC-BMEC祖细胞的剪切应力对BBB表型诱导的影响。
我们将评估发育阶段中剪切诱导屏障和转运蛋白表型,
区分iPSC-BMEC。
2.阐明p21和TGFβ信号传导在iPSC中剪切介导的BBB表型诱导中的作用-
BMEC祖细胞。我们将采用p21和TGFβ通路的化学和遗传抑制来测试
这些途径在iPSC-BMEC祖细胞中BBB表型的剪切诱导中的必要性。
3.在接触和非接触等基因神经血管单元模型中评价剪切调节iPSC-BMEC。
我们将构建由在剪切存在下分化的iPSC-BMEC组成的NVU模型,
iPSC衍生的神经元、星形胶质细胞和周细胞,以检验剪切施加到iPSC-
BMEC祖细胞将产生具有增强的、持续的BBB表型的高稳定性NVU模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sean P Palecek其他文献
Sean P Palecek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sean P Palecek', 18)}}的其他基金
Label-free single-cell imaging for quality control of cardiomyocyte biomanufacturing
用于心肌细胞生物制造质量控制的无标记单细胞成像
- 批准号:
10675976 - 财政年份:2023
- 资助金额:
$ 33.14万 - 项目类别:
A Multi-Omics Approach to Discover Metabolic Critical Quality Attributes for Cardiomyocyte Biomanufacturing
发现心肌细胞生物制造代谢关键质量属性的多组学方法
- 批准号:
10435467 - 财政年份:2019
- 资助金额:
$ 33.14万 - 项目类别:
Mechanisms of Shear Induction of Blood-Brain Barrier Phenotypes in Human iPSC-derived Brain Endothelial Progenitors
人 iPSC 来源的脑内皮祖细胞血脑屏障表型的剪切诱导机制
- 批准号:
10557176 - 财政年份:2019
- 资助金额:
$ 33.14万 - 项目类别:
A Multi-Omics Approach to Discover Metabolic Critical Quality Attributes for Cardiomyocyte Biomanufacturing
发现心肌细胞生物制造代谢关键质量属性的多组学方法
- 批准号:
10218267 - 财政年份:2019
- 资助金额:
$ 33.14万 - 项目类别:
Prevention of Candida biofilms by localized delivery of aurein analogues
通过局部递送金黄色素类似物预防念珠菌生物膜
- 批准号:
9221080 - 财政年份:2016
- 资助金额:
$ 33.14万 - 项目类别:
Prevention of Candida biofilms by localized delivery of aurein analogues
通过局部递送金黄色素类似物预防念珠菌生物膜
- 批准号:
9813824 - 财政年份:2016
- 资助金额:
$ 33.14万 - 项目类别:
Shear regulated differentiation of hPSCs to brain endothelial cells
hPSC 向脑内皮细胞的剪切调节分化
- 批准号:
8619338 - 财政年份:2013
- 资助金额:
$ 33.14万 - 项目类别:
Shear regulated differentiation of hPSCs to brain endothelial cells
hPSC 向脑内皮细胞的剪切调节分化
- 批准号:
8723321 - 财政年份:2013
- 资助金额:
$ 33.14万 - 项目类别:
Prevention of C. Albicans Biofilms by Beta-Peptide Release From Thin Films
通过薄膜释放 β 肽来预防白色念珠菌生物膜
- 批准号:
8681304 - 财政年份:2011
- 资助金额:
$ 33.14万 - 项目类别:
Prevention of C. Albicans Biofilms by Beta-Peptide Release From Thin Films
通过薄膜释放 β 肽来预防白色念珠菌生物膜
- 批准号:
8484784 - 财政年份:2011
- 资助金额:
$ 33.14万 - 项目类别:
相似国自然基金
Agonist-GPR119-Gs复合物的结构生物学研究
- 批准号:32000851
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
S1PR1 agonistによる脳血液関門制御を介した脳梗塞の新規治療法開発
S1PR1激动剂调节血脑屏障治疗脑梗塞新方法的开发
- 批准号:
24K12256 - 财政年份:2024
- 资助金额:
$ 33.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AHR agonistによるSLE皮疹の新たな治療薬の開発
使用 AHR 激动剂开发治疗 SLE 皮疹的新疗法
- 批准号:
24K19176 - 财政年份:2024
- 资助金额:
$ 33.14万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Evaluation of a specific LXR/PPAR agonist for treatment of Alzheimer's disease
特定 LXR/PPAR 激动剂治疗阿尔茨海默病的评估
- 批准号:
10578068 - 财政年份:2023
- 资助金额:
$ 33.14万 - 项目类别:
AUGMENTING THE QUALITY AND DURATION OF THE IMMUNE RESPONSE WITH A NOVEL TLR2 AGONIST-ALUMINUM COMBINATION ADJUVANT
使用新型 TLR2 激动剂-铝组合佐剂增强免疫反应的质量和持续时间
- 批准号:
10933287 - 财政年份:2023
- 资助金额:
$ 33.14万 - 项目类别:
Targeting breast cancer microenvironment with small molecule agonist of relaxin receptor
用松弛素受体小分子激动剂靶向乳腺癌微环境
- 批准号:
10650593 - 财政年份:2023
- 资助金额:
$ 33.14万 - 项目类别:
AMPKa agonist in attenuating CPT1A inhibition and alcoholic chronic pancreatitis
AMPKa 激动剂减轻 CPT1A 抑制和酒精性慢性胰腺炎
- 批准号:
10649275 - 财政年份:2023
- 资助金额:
$ 33.14万 - 项目类别:
A randomized double-blind placebo controlled Phase 1 SAD study in male and female healthy volunteers to assess safety, pharmacokinetics, and transient biomarker changes by the ABCA1 agonist CS6253
在男性和女性健康志愿者中进行的一项随机双盲安慰剂对照 1 期 SAD 研究,旨在评估 ABCA1 激动剂 CS6253 的安全性、药代动力学和短暂生物标志物变化
- 批准号:
10734158 - 财政年份:2023
- 资助金额:
$ 33.14万 - 项目类别:
Investigating mechanisms underpinning outcomes in people on opioid agonist treatment for OUD: Disentangling sleep and circadian rhythm influences on craving and emotion regulation
研究阿片类激动剂治疗 OUD 患者结果的机制:解开睡眠和昼夜节律对渴望和情绪调节的影响
- 批准号:
10784209 - 财政年份:2023
- 资助金额:
$ 33.14万 - 项目类别:
A novel nanobody-based agonist-redirected checkpoint (ARC) molecule, aPD1-Fc-OX40L, for cancer immunotherapy
一种基于纳米抗体的新型激动剂重定向检查点 (ARC) 分子 aPD1-Fc-OX40L,用于癌症免疫治疗
- 批准号:
10580259 - 财政年份:2023
- 资助金额:
$ 33.14万 - 项目类别:
Identification and characterization of a plant growth promoter from wild plants: is this a novel plant hormone agonist?
野生植物中植物生长促进剂的鉴定和表征:这是一种新型植物激素激动剂吗?
- 批准号:
23K05057 - 财政年份:2023
- 资助金额:
$ 33.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




