Adaptive randomized designs for cancer clinical trials by using integer algorithms and exact Monte Carlo methods
使用整数算法和精确蒙特卡罗方法进行癌症临床试验的自适应随机设计
基本信息
- 批准号:10329938
- 负责人:
- 金额:$ 7.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-14 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAnalysis of CovarianceBudgetsCharacteristicsClinical ResearchClinical TrialsClinical Trials DesignClinical effectivenessComputer softwareComputersConfidence IntervalsDataDevelopmentDrug CostsEffectivenessEnrollmentGoalsInferiorIntuitionLinkMaintenanceMalignant NeoplasmsMethodsMonte Carlo MethodNamesNatureOutcomeParticipantPatientsPhasePhase II Clinical TrialsPopulationPropertyRandomizedRandomized Clinical TrialsResearch DesignSample SizeSamplingSchoolsSelection BiasTimeTime StudyTreatment Failureanticancer researcharmbasecancer clinical trialcostdesigndrug developmentflexibilityphase 2 designsprimary endpointprogramsresponsesoftware developmentsuccesssupercomputertreatment armtwo-arm studyweb site
项目摘要
Project Summary/Abstract
Current phase II clinical trial designs for cancer studies are generally not flexible and effective enough to reduce
sample size and costs. Unlike traditional single-arm two-stage designs, adaptive designs allow a study to be
modified with the information observed from previous stages. Recently, a few adaptive designs were developed
for phase II cancer clinical trials with binary endpoints, and the majority of them cannot be directly applied
in practice because of a counter-intuitive feature of the relationship between sample size and the number of
responses from previous stages. We developed a new single-arm two-stage design that corrects that counter-
intuitive feature of the study design. These adaptive designs were all developed for single-arm studies. In Aim
1, we will use efficient integer algorithms along with exact Monte Carlo simulation methods to develop adaptive
randomized two-arm designs for cancer clinical trials. The proposed adaptive randomized designs are expected
to save between 10% to 35% sample sizes as compared to the conventional group sequential designs. Unlike
the existing adaptive randomized designs minimizing expected treatment failures, we will develop the first
adaptive randomized designs with the objective to minimize expected sample size. For the existing adaptive
single-arm design using integer algorithms without importance sampling, it could take a few months by using
a stand-alone computer, and a few days using a supercomputer. With multiple arms in a study, it would be very
computationally intensive. The goal of Aim 3 is to reduce the computation time to no more than 30 minutes
by utilizing importance sampling and integer algorithms on a stand-alone computer. The traditionally used
importance sampling does not guarantee the type I error rate and power. For this reason, we will utilize the
recently developed exact importance sampling method to guarantee type I error rate and power. A combination
of integer algorithms and importance sampling will be able to reduce the computation time to no more than
30 minutes for the proposed adaptive designs. In addition to new adaptive design development, we will also
develop proper statistical inference for adaptive two-stage clinical trials in Aim 2. The existing exact approaches
from commercial software for statistical inference are often based on the conditional framework, by assuming
both marginal totals fixed. Such exact conditional approaches are not aligned with the study design for a clinical
trial which often only assumes the sample size of each arm fixed, not the total responses. The proposed exact
statistical inferences are proper by considering the nature of adaptive designs with multiple stages and sample
size change. Ultimately, we will develop adaptive randomized designs for phase II cancer studies with binary
endpoints with the smallest expected sample size. The proposed designs will be available for public use through
a new R package and a new website that will use a powerful supercomputer. Upon completion of this project,
our school will take over the cost of maintenance of the software developed from this proposal.
项目总结/文摘
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Continuity corrected Wilson interval for the difference of two independent proportions.
连续性修正了两个独立比例差异的威尔逊区间。
- DOI:10.1007/s44199-023-00054-8
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Shan,Guogen;Lou,XiangYang;Wu,SamuelS
- 通讯作者:Wu,SamuelS
New Confidence Intervals for Relative Risk of Two Correlated Proportions.
- DOI:10.1007/s12561-022-09345-7
- 发表时间:2023
- 期刊:
- 影响因子:1
- 作者:DelRocco N;Wang Y;Wu D;Yang Y;Shan G
- 通讯作者:Shan G
Comparison of Pocock and Simon's covariate-adaptive randomization procedures in clinical trials.
- DOI:10.1186/s12874-024-02151-3
- 发表时间:2024-01-25
- 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
Optimal two-stage designs based on restricted mean survival time for a single-arm study.
基于单臂研究的平均生存时间的最佳两阶段设计。
- DOI:10.1016/j.conctc.2021.100732
- 发表时间:2021-03
- 期刊:
- 影响因子:1.5
- 作者:Shan G
- 通讯作者:Shan G
Randomized two-stage optimal design for interval-censored data.
- DOI:10.1080/10543406.2021.2009499
- 发表时间:2022-03
- 期刊:
- 影响因子:1.1
- 作者:Shan, Guogen
- 通讯作者:Shan, Guogen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guogen Shan其他文献
Guogen Shan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guogen Shan', 18)}}的其他基金
Application of deep learning and novel survival models to predict MCI-to-AD dementia progression
应用深度学习和新型生存模型预测 MCI 至 AD 痴呆的进展
- 批准号:
10725359 - 财政年份:2023
- 资助金额:
$ 7.63万 - 项目类别:
Alzheimer's Disease: New Trial Designs for Emerging Challenges
阿尔茨海默病:应对新挑战的新试验设计
- 批准号:
10586025 - 财政年份:2021
- 资助金额:
$ 7.63万 - 项目类别:
Alzheimer's Disease: New Trial Designs for Emerging Challenges
阿尔茨海默病:应对新挑战的新试验设计
- 批准号:
10410110 - 财政年份:2021
- 资助金额:
$ 7.63万 - 项目类别:
Alzheimer's Disease: New Trial Designs for Emerging Challenges
阿尔茨海默病:应对新挑战的新试验设计
- 批准号:
10322454 - 财政年份:2021
- 资助金额:
$ 7.63万 - 项目类别:
Adaptive randomized designs for cancer clinical trials by using integer algorithms and exact Monte Carlo methods
使用整数算法和精确蒙特卡罗方法进行癌症临床试验的自适应随机设计
- 批准号:
10405326 - 财政年份:2021
- 资助金额:
$ 7.63万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 7.63万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 7.63万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 7.63万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 7.63万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 7.63万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 7.63万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 7.63万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 7.63万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 7.63万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 7.63万 - 项目类别:
Research Grant