Adaptive randomized designs for cancer clinical trials by using integer algorithms and exact Monte Carlo methods
使用整数算法和精确蒙特卡罗方法进行癌症临床试验的自适应随机设计
基本信息
- 批准号:10405326
- 负责人:
- 金额:$ 7.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-14 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAnalysis of CovarianceBudgetsCharacteristicsClinical ResearchClinical TrialsClinical Trials DesignClinical effectivenessComputer softwareComputersConfidence IntervalsDataDevelopmentDrug CostsEffectivenessEnrollmentGoalsInferiorIntuitionLinkMaintenanceMalignant NeoplasmsMethodsMonte Carlo MethodNamesNatureOutcomeParticipantPatientsPhasePhase II Clinical TrialsPopulationPropertyRandomizedRandomized Clinical TrialsResearch DesignSample SizeSamplingSchoolsSelection BiasTimeTime StudyTreatment Failureanticancer researcharmbasecancer clinical trialcostdesigndrug developmentflexibilityphase 2 designsprimary endpointprogramsresponsesoftware developmentsuccesssupercomputertreatment armtwo-arm studyweb site
项目摘要
Project Summary/Abstract
Current phase II clinical trial designs for cancer studies are generally not flexible and effective enough to reduce
sample size and costs. Unlike traditional single-arm two-stage designs, adaptive designs allow a study to be
modified with the information observed from previous stages. Recently, a few adaptive designs were developed
for phase II cancer clinical trials with binary endpoints, and the majority of them cannot be directly applied
in practice because of a counter-intuitive feature of the relationship between sample size and the number of
responses from previous stages. We developed a new single-arm two-stage design that corrects that counter-
intuitive feature of the study design. These adaptive designs were all developed for single-arm studies. In Aim
1, we will use efficient integer algorithms along with exact Monte Carlo simulation methods to develop adaptive
randomized two-arm designs for cancer clinical trials. The proposed adaptive randomized designs are expected
to save between 10% to 35% sample sizes as compared to the conventional group sequential designs. Unlike
the existing adaptive randomized designs minimizing expected treatment failures, we will develop the first
adaptive randomized designs with the objective to minimize expected sample size. For the existing adaptive
single-arm design using integer algorithms without importance sampling, it could take a few months by using
a stand-alone computer, and a few days using a supercomputer. With multiple arms in a study, it would be very
computationally intensive. The goal of Aim 3 is to reduce the computation time to no more than 30 minutes
by utilizing importance sampling and integer algorithms on a stand-alone computer. The traditionally used
importance sampling does not guarantee the type I error rate and power. For this reason, we will utilize the
recently developed exact importance sampling method to guarantee type I error rate and power. A combination
of integer algorithms and importance sampling will be able to reduce the computation time to no more than
30 minutes for the proposed adaptive designs. In addition to new adaptive design development, we will also
develop proper statistical inference for adaptive two-stage clinical trials in Aim 2. The existing exact approaches
from commercial software for statistical inference are often based on the conditional framework, by assuming
both marginal totals fixed. Such exact conditional approaches are not aligned with the study design for a clinical
trial which often only assumes the sample size of each arm fixed, not the total responses. The proposed exact
statistical inferences are proper by considering the nature of adaptive designs with multiple stages and sample
size change. Ultimately, we will develop adaptive randomized designs for phase II cancer studies with binary
endpoints with the smallest expected sample size. The proposed designs will be available for public use through
a new R package and a new website that will use a powerful supercomputer. Upon completion of this project,
our school will take over the cost of maintenance of the software developed from this proposal.
项目摘要/摘要
目前用于癌症研究的II期临床试验设计通常不具备足够的fl可行性和有效性,不足以减少
样本大小和成本。与传统的单臂两阶段设计不同,自适应设计允许研究
莫迪用从前几个阶段观察到的信息进行了fi。最近,一些自适应设计被开发出来
用于具有双终点的II期癌症临床试验,其中大多数不能直接应用
在实践中,因为样本大小和数量之间的关系具有与直觉相反的特征
前几个阶段的答复。我们开发了一种新的单臂两级设计,纠正了
直观的书房设计特点。这些适应性设计都是为单臂研究开发的。在AIM
1.我们将使用有效的fi整数算法和精确的蒙特卡罗模拟方法来开发自适应
癌症临床试验的随机双臂设计。所提出的自适应随机设计是可望的。
与传统的成组顺序设计相比,可节省10%至35%的样本量。不像
现有的自适应随机设计将预期治疗失败降至最低,我们将开发first
自适应随机设计,目标是最小化预期样本量。对于现有的自适应
单臂设计使用整数算法而不需要重要抽样,如果使用
一台独立的计算机,以及几天使用超级计算机的时间。在一个研究中有多个手臂,这将是非常
计算密集的。目标3的目标是将计算时间减少到不超过30分钟
在一台独立的计算机上利用重要性采样和整数算法。传统上使用的
重要性抽样不能保证I类误码率和功率。因此,我们将利用
最近提出了精确重要性抽样方法,以保证I类误码率和功率。一种组合
的整数算法和重要性采样将能够将计算时间减少到不超过
30分钟用于建议的自适应设计。除了新的适应性设计开发外,我们还将
为目标2中的适应性两阶段临床试验制定适当的统计推断。现有的确切方法
从商业软件进行统计推断往往都是基于条件框架,通过假设
两个边际总和fix。这种确切的有条件的方法与临床研究设计不一致。
该试验通常只假设每个ARMfix的样本大小,而不是总回答数。建议的确切
考虑到多阶段、多样本的适应性设计的性质,统计推断是适当的
大小变了。最终,我们将为II期癌症研究开发自适应随机设计,
具有最小预期样本量的端点。拟议的设计将通过以下途径供公众使用
一个新的R包和一个将使用强大的超级计算机的新网站。在这个项目完成后,
我们学校将承担根据该提案开发的软件的维护费用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guogen Shan其他文献
Guogen Shan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guogen Shan', 18)}}的其他基金
Application of deep learning and novel survival models to predict MCI-to-AD dementia progression
应用深度学习和新型生存模型预测 MCI 至 AD 痴呆的进展
- 批准号:
10725359 - 财政年份:2023
- 资助金额:
$ 7.63万 - 项目类别:
Alzheimer's Disease: New Trial Designs for Emerging Challenges
阿尔茨海默病:应对新挑战的新试验设计
- 批准号:
10586025 - 财政年份:2021
- 资助金额:
$ 7.63万 - 项目类别:
Alzheimer's Disease: New Trial Designs for Emerging Challenges
阿尔茨海默病:应对新挑战的新试验设计
- 批准号:
10410110 - 财政年份:2021
- 资助金额:
$ 7.63万 - 项目类别:
Adaptive randomized designs for cancer clinical trials by using integer algorithms and exact Monte Carlo methods
使用整数算法和精确蒙特卡罗方法进行癌症临床试验的自适应随机设计
- 批准号:
10329938 - 财政年份:2021
- 资助金额:
$ 7.63万 - 项目类别:
Alzheimer's Disease: New Trial Designs for Emerging Challenges
阿尔茨海默病:应对新挑战的新试验设计
- 批准号:
10322454 - 财政年份:2021
- 资助金额:
$ 7.63万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 7.63万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 7.63万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 7.63万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 7.63万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 7.63万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 7.63万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 7.63万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 7.63万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 7.63万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 7.63万 - 项目类别:
Continuing Grant