AI-driven biomarker analysis of intact whole brains imaged at micron and sub-micron resolution

以微米和亚微米分辨率成像的完整全脑的人工智能驱动生物标志物分析

基本信息

  • 批准号:
    10330017
  • 负责人:
  • 金额:
    $ 22.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-02-01 至 2023-01-31
  • 项目状态:
    已结题

项目摘要

Abstract. Whole-organ 3D immunohistochemistry is revolutionizing the field of neuroscience, enabling unprecedented insight into the distribution of neural cells and neurological markers throughout the brain in health and disease. LifeCanvas Technologies is at the forefront of the new field of spatial proteomics, providing a complete workflow for whole-organ preservation, tissue clearing, immunohistochemical labeling, and imaging. Nevertheless, an ongoing challenge for such studies is the need to rapidly, reproducibly and rigorously quantify terabyte-sized datasets from whole-organ imaging efforts. While progress has been made in applying Artificial Intelligence (AI) tools to enable detection of cellular and sub-cellular markers in neural tissue, one-size-fits-all algorithms are inadequate for analyzing complex, information-rich brain datasets due to varying biomolecular expression patterns (e.g. nuclear, cytoplasmic, membrane-bound) and region-specific heterogeneities in cell density and neural cell types. However, AI-driven algorithms targeting a subset of labeling patterns can be effective provided the availability of adequate training data. LifeCanvas Technologies LCT is optimally positioned to develop highly accurate algorithms serving a wide range of detection tasks through its access to high volumes of whole-organ image data containing a variety of label expression patterns via its Contract Research Organization and user base. LCT proposes to develop a data analysis program, SmartAnalytics, which will embed a suite of AI algorithms within a user-friendly software package to identify labeled cell locations and characterize morphological features across the whole brain at cellular and sub-cellular resolution. Specifically, LCT will use intact, 3D immunolabeled mouse brains to design AI algorithms to detect labeled cells imaged at cellular resolution and generate further algorithms for the segmentation of labeled features imaged at sub-micron resolution. Data from LCT’s Contract Research Organization and academic collaborations will be continually fed back to improve and expand the library of detection algorithms available within SmartAnalytics, and these developments will drive further customer adoption and enhancement of future versions of the software. SmartAnalytics will guide users through model application, quality-control testing, and the generation of output products such as figures and summary statistics. In summary, SmartAnalytics will be an evolving and user- friendly workflow execution program that enables neuroscientists to take full advantage of their 3D image data, driving new discoveries in brain function, development and disease.
抽象的。全器官3D免疫组织化学正在彻底改变神经科学领域, 前所未有的深入了解神经细胞和神经标记物在整个大脑中的分布, 和疾病LifeCanvas Technologies处于空间蛋白质组学新领域的最前沿, 完整的工作流程,用于整个器官保存、组织清除、免疫组织化学标记和成像。 然而,这些研究的一个持续挑战是需要快速,可重复和严格地量化 整个器官成像的TB级数据集。虽然在应用人工智能方面取得了进展, 智能(AI)工具,能够检测神经组织中的细胞和亚细胞标记物,一刀切 算法不足以分析复杂的、信息丰富的大脑数据集, 表达模式(如核、胞质、膜结合)和细胞内区域特异性异质性 密度和神经细胞类型。然而,针对标记模式子集的AI驱动算法可以被 有效的前提是提供充分的培训数据。LifeCanvas Technologies LCT处于最佳位置 开发高度精确的算法,通过其访问大量的检测任务, 包含各种标签表达模式的整个器官图像数据, 组织和用户基础。LCT建议开发一个数据分析程序SmartAnalytics,该程序将 在用户友好的软件包中嵌入一套人工智能算法,以识别标记的细胞位置, 以细胞和亚细胞分辨率表征整个大脑的形态特征。具体地说, LCT将使用完整的3D免疫标记小鼠大脑来设计AI算法,以检测成像的标记细胞, 细胞分辨率,并生成进一步的算法,用于亚微米成像的标记特征的分割 分辨率来自LCT合同研究组织和学术合作的数据将持续提供 返回以改进和扩展SmartAnalytics中可用的检测算法库, 这些发展将推动客户进一步采用和改进未来版本的软件。 SmartAnalytics将指导用户完成模型应用、质量控制测试和输出生成 产品,如数字和汇总统计。总之,SmartAnalytics将是一个不断发展和用户- 友好的工作流程执行程序,使神经科学家能够充分利用他们的3D图像数据, 推动大脑功能、发育和疾病的新发现。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Katherine Cora Ames其他文献

Katherine Cora Ames的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Katherine Cora Ames', 18)}}的其他基金

3D molecular phenotyping of intact brain tissue via high-throughput active immunohistochemistry
通过高通量主动免疫组织化学对完整脑组织进行 3D 分子表型分析
  • 批准号:
    10266425
  • 财政年份:
    2019
  • 资助金额:
    $ 22.06万
  • 项目类别:
3D molecular phenotyping of intact brain tissue via high-throughput active immunohistochemistry
通过高通量主动免疫组织化学对完整脑组织进行 3D 分子表型分析
  • 批准号:
    10414097
  • 财政年份:
    2019
  • 资助金额:
    $ 22.06万
  • 项目类别:

相似海外基金

WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 22.06万
  • 项目类别:
    Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 22.06万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 22.06万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 22.06万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 22.06万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 22.06万
  • 项目类别:
    EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 22.06万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 22.06万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 22.06万
  • 项目类别:
    Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 22.06万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了