A comprehensive quality control testing strategy for engineered cells
工程细胞的全面质量控制测试策略
基本信息
- 批准号:10330008
- 负责人:
- 金额:$ 35.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-15 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAllelesAneuploidyBioinformaticsBiological AssayBiomedical ResearchCRISPR/Cas technologyCell TherapyCellsChromatidsChromosomesClinicalClinical EngineeringCollaborationsCollectionColorComplexContractsDNA RepairDataData SetDefectDetectionDevelopmentDiseaseDouble Strand Break RepairEngineeringExhibitsFundingG-BandingGenesGenomeGenome engineeringGenomic HybridizationsGenomicsGoalsGovernmentHealthHereditary DiseaseHumanIn Situ HybridizationIndividualInheritedKaryotypeKaryotype determination procedureKnowledgeMalignant NeoplasmsMeasurementMeasuresMedicalMethodsModelingMonitorNucleotidesOutcomePaintPatientsPediatric HospitalsPharmacologic SubstancePolyploidyPopulationProcessProviderQuality ControlResearchResolutionRiskSafetySaint Jude Children&aposs Research HospitalSamplingSister Chromatid ExchangeSiteSourceSpeedStructureSystemTechniquesTechnologyTestingTherapeuticTimeTrainingVariantWorkWritingbasecellular engineeringclinical applicationcommercial applicationcomparativedata standardsdensitydesignexperienceexperimental studyfluorophoregene therapygenome editinggenome integritygenomic datahigh resolution imagingimprovedinnovationinsertion/deletion mutationpatient safetypredictive modelingprogramsreference genomeresearch and developmentscreeningstem cellstechnological innovationtherapeutic genetherapy developmenttoolwhole genome
项目摘要
ABSTRACT
KromaTiD’s current commercial therapeutic gene editing customers have expressed the critical need for a
standard approach to screening engineered cells for quality and safety that yields a comprehensive genomic
dataset with improved resolution, localization, and speed. Directional Genomic Hybridization (dGH™) has been
developed to efficiently screen cell populations for the presence of simple, complex, and heterogenous
structural variants. In this project, A Comprehensive Quality Control Testing Strategy for Engineered Cells, by
combining five-color, whole genome dGH with the fit for purpose sequencing methods of a clinically important
genome engineering system, we propose an approach to assess, for the first time, the complete outcomes of
gene editing: successful edits, unsuccessful edits, off-target edits, sequence variants, structural variants, and
gross genome integrity. Furthermore, we propose to develop a standardized data specification integrating the
data from these methods into a regulatory ready data package.
dGH is an in-situ hybridization technique utilizes high-density chromatid paints to directly interrogate the
structure of a genome in a single cell without bioinformatic interpretation, providing a complete toolset for
hypothesis-free, single-cell measurement of SVs at edit sites, per chromosome, and across the whole genome.
For companies developing therapies based on gene editing and other cell engineering approaches,
understanding editing systems and mis-repair of DSBs are critical for patient safety and regulatory approval.
Currently, batches of edited cells are screened for edit-site errors by sequencing. Because DSBs do not all
occur at the edit site, SVs in batches of edited cells exhibit a complex, heterogenous mixture of edit-site and
random breakpoints. G-banding can be used to screen for gross genome defects but cannot detect small or
complex structural variants. dGH assays detect structural variation from a reference genome without target
information, resolve SVs of 5Kb and larger, and provide improved genomic structural assessment capable of
displacing standard karyotyping.
The potential of genome editing approaches such as CRISPR/Cas9, for the treatment of diseases is widely
recognized, and realization of the promise of such therapeutic approaches will rely on accurate confirmation of
the presence and absence of potentially risky structural variants. For these reasons, comprehensive detection
and characterization of structural variations is a necessary step toward understanding gene editing and other
cell engineering systems. dGH combined with best-fit sequencing can provide a complete analysis of the
outcomes of gene editing from SNVs and indels though large, complex SVs.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher John Tompkins其他文献
Christopher John Tompkins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher John Tompkins', 18)}}的其他基金
Automated, high-throughput identification of genetic structural variants for gene editing and undiagnosed genetic diseases screening
自动化、高通量鉴定遗传结构变异,用于基因编辑和未确诊遗传病筛查
- 批准号:
10228763 - 财政年份:2020
- 资助金额:
$ 35.05万 - 项目类别:
Automated, high-throughput identification of genetic structural variants for gene editing and undiagnosed genetic diseases screening
自动化、高通量鉴定遗传结构变异,用于基因编辑和未确诊遗传病筛查
- 批准号:
10080433 - 财政年份:2020
- 资助金额:
$ 35.05万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 35.05万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 35.05万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 35.05万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 35.05万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 35.05万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 35.05万 - 项目类别:
Studentship
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 35.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 35.05万 - 项目类别:
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 35.05万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 35.05万 - 项目类别: