Non-canonical Notch1 regulation of proliferation and adherens junctions in breast cancer
Notch1 对乳腺癌增殖和粘附连接的非经典调控
基本信息
- 批准号:10328889
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalActomyosinAdherens JunctionArchitectureBehaviorBiochemicalBiologicalBiological ModelsBiomimeticsBostonBreastBreast Cancer ModelBreast Cancer PatientBreast Cancer cell lineBreast Cancer therapyBreast Epithelial CellsCRISPR/Cas technologyCancer CenterCancer ModelCell ProliferationCell ShapeCell-Cell AdhesionCellsCollaborationsComplexContact InhibitionCrowdingCytoskeletal ModelingCytoskeletonDevelopmentDisputesDuct (organ) structureDuctal EpitheliumERBB2 geneEndotheliumEngineeringEnsureEnvironmentEpithelial Cell ProliferationEpithelial CellsFundingFutureGenetic TranscriptionGoalsGrantGrowthGrowth FactorHumanHuman EngineeringIn VitroInternationalLaboratory StudyLeadershipLinkMalignant NeoplasmsMammary DuctMammary NeoplasmsMammary TumorigenesisMechanicsMediatingMentorsMicrofabricationMicrofluidicsModelingMolecularMolecular GeneticsMorphogenesisMutationNOTCH1 geneNoninfiltrating Intraductal CarcinomaOncogenicPathologyPathway interactionsPatientsPatternPharmaceutical PreparationsPharmacologyPhasePhenotypePredispositionPregnancyProcessPubertyReceptor SignalingRegulationResearchResearch TrainingRoleShapesSignal PathwaySignal TransductionStudy modelsSystemTestingTherapeuticTissue EngineeringTissue ModelTissuesTrainingTranscriptional RegulationTumor Suppressor ProteinsTumor stageUniversitiesWorkWritingXenograft Modelbasebreast cancer progressioncancer typecareercareer developmentcell behaviorclinical efficacyclinically relevantdesigndisease heterogeneityefficacy testinggenome-widein vivoinhibitorinsightinterdisciplinary approachloss of functionloss of function mutationmalignant breast neoplasmmammarymammary epitheliummechanical stimulusmouse modelnotch proteinnovelprognostic valueprogramsreceptorresponsestem cell self renewaltherapeutic targettooltumortumor initiationtumor progressiontumorigenesis
项目摘要
Project Summary
Genome-wide sequencing of human breast tumors has revealed the remarkable molecular heterogeneity of the
disease. However, the advancement of personalized breast cancer therapies requires a greater understanding
of how specific genetic alterations contribute to the cellular behaviors that underlie the onset and development
of breast cancer. We have recently identified a novel, transcription-independent function of the Notch1 receptor
in the regulation of mammary epithelial proliferation and adherens junction organization. This proposal will utilize
an interdisciplinary approach that combines a 3D tissue engineered human mammary duct platform with
molecular and genetic tools to dissect cancer proliferative signaling pathways and will establish a previously
undescribed, tumor suppressive Notch1 pathway in breast cancer. During the K99 phase (Aim 1), we will identify
domain-specific roles of Notch1 in the transcription-independent regulation of mammary adherens junctions and
cortical cytoskeleton, the signaling and proliferative pathways controlled by this non-canonical Notch1 signaling,
and demonstrate the effects of transcription-independent NOTCH1 loss-of-function in breast cancer xenograft
models. During the R00 phase, we will frame tumor suppressive Notch1 function in the context of mammary
contact inhibition of proliferation and identify the molecular mechanisms and mechanics by which Notch1 is
activated at adherens junctions during mammary tissue growth (Aim 2). In parallel, we will further leverage our
biomimetic mammary duct model to explore to the distinct morphogenic phenotypes of two major recurring breast
cancer mutations and test the efficacy of clinically active drugs at each stage of their tumor progression (Aim 3).
The proposed research will define effects of NOTCH1 loss-of-function mutations in human breast cancer, inform
therapeutic targets in patients harboring such mutations, and establish a new strategy to model breast cancer
progression and assess therapies in 3D biomimetic cultures. I will gain research training in microfluidic-based,
in vitro tissue engineering, as well as cancer signaling, pathology, and in vivo mouse modeling, while
simultaneously enhancing career development through training in grant writing, mentoring, and leadership. I
have assembled an exceptional, complementary mentoring team to help me achieve my research and career
goals: Dr. Christopher Chen, expert in organotypic tissue modeling and cell mechanics, will be my primary mentor
and Dr. Andrea McClatchey (MGH Cancer Center/Harvard), an international leader in cytoskeletal regulation of
tumorigenesis, tumor suppressor signaling, and cancer modeling, will be my co-mentor. The institutional
environment provided by the Biological Design Center at Boston University is ideally suited for this proposal and
offers opportunities for scientific discussion, collaboration between biologists, clinicians, and engineers, and
career development. Together, the proposed studies and career development training will ensure I achieve my
goal of establishing a successful, independently-funded laboratory studying underlying mechanisms of tissue
morphogenesis and tumorigenesis.
项目摘要
对人类乳腺肿瘤的全基因组测序揭示了这种显著的分子异质性
疾病。然而,个性化乳腺癌治疗的进步需要更多的理解
具体的基因改变如何有助于细胞行为的发生和发展
乳腺癌的风险。我们最近发现了Notch1受体的一种新的、不依赖转录的功能
在调控乳腺上皮细胞增殖和粘连连接组织方面。这项建议将利用
一种将3D组织工程化人类乳房导管平台与
分子和遗传学工具剖析癌症增殖信号通路,并将建立以前的
乳腺癌中未被描述的肿瘤抑制Notch1通路。在K99阶段(目标1),我们将确定
Notch1在乳腺黏附连接和转录非依赖性调控中的结构域特异性作用
皮质细胞骨架,由这种非规范的Notch1信号控制的信号和增殖途径,
并证明了转录非依赖性NOTCH1功能丧失在乳腺癌异种移植中的作用
模特们。在R00阶段,我们将在乳腺的背景下框定抑制肿瘤的Notch1功能
接触抑制增殖并确定Notch1的分子机制和机制
在乳腺组织生长过程中在粘连连接处激活(目标2)。同时,我们将进一步利用我们的
仿生乳腺导管模型探讨两种主要复发乳腺的不同形态发生表型
研究癌症突变,并测试临床活性药物在肿瘤进展的每个阶段的疗效(目标3)。
这项拟议的研究将确定NOTCH1功能缺失突变对人类乳腺癌的影响
具有这种突变的患者的治疗靶点,并建立一种新的乳腺癌模型策略
3D仿生培养中的治疗进展和评估。我将接受微流控技术的研究培训,
体外组织工程,以及癌症信号、病理学和体内小鼠模型,而
同时通过赠款撰写、指导和领导力方面的培训促进职业发展。我
我组建了一个出色的、互为补充的指导团队,帮助我实现我的研究和职业生涯
目标:器官组织建模和细胞力学方面的专家克里斯托弗·陈博士将是我的主要导师
安德里亚·麦克莱奇博士(麻省理工学院癌症中心/哈佛大学),细胞骨架调控方面的国际领导者
肿瘤发生、肿瘤抑制信号和癌症模型,将是我的共同导师。体制上的
波士顿大学生物设计中心提供的环境非常适合这项提议,
为生物学家、临床医生和工程师之间的科学讨论和协作提供机会,以及
职业发展。总之,拟议的学习和职业发展培训将确保我实现我的
建立一个成功的、独立资助的研究组织潜在机制的实验室的目标
形态发生和肿瘤发生。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
3D mesenchymal cell migration is driven by anterior cellular contraction that generates an extracellular matrix prestrain.
- DOI:10.1016/j.devcel.2021.02.017
- 发表时间:2021-03-22
- 期刊:
- 影响因子:11.8
- 作者:Doyle AD;Sykora DJ;Pacheco GG;Kutys ML;Yamada KM
- 通讯作者:Yamada KM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew L Kutys其他文献
Matthew L Kutys的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew L Kutys', 18)}}的其他基金
Decoding cortical Notch signaling and morphogenic instruction at cell-cell interfaces
解码细胞-细胞界面的皮质Notch信号传导和形态发生指令
- 批准号:
10714471 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Non-canonical Notch1 regulation of proliferation and adherens junctions in breast cancer
Notch1 对乳腺癌增殖和粘附连接的非经典调控
- 批准号:
9666258 - 财政年份:2018
- 资助金额:
$ 24.9万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Nuclear force feedback as rheostat for actomyosin tension control
核力反馈作为肌动球蛋白张力控制的变阻器
- 批准号:
MR/Y001125/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant
CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division
职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调
- 批准号:
2337141 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Continuing Grant
CAREER: Computational and Theoretical Investigation of Actomyosin Contraction Systems
职业:肌动球蛋白收缩系统的计算和理论研究
- 批准号:
2340865 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Continuing Grant
Elucidation of the mechanism by which actomyosin emerges cell chirality
阐明肌动球蛋白出现细胞手性的机制
- 批准号:
23K14186 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deciphering actomyosin contractility regulation during incomplete germ cell division
破译不完全生殖细胞分裂过程中肌动球蛋白收缩性的调节
- 批准号:
573067-2022 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Actuating robots with actomyosin active gels
职业:用肌动球蛋白活性凝胶驱动机器人
- 批准号:
2144380 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201236 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201235 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Coordination of actomyosin and anillo-septin sub-networks of the contractile ring during cytokinesis
胞质分裂过程中收缩环肌动球蛋白和 anillo-septin 子网络的协调
- 批准号:
463633 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Operating Grants
The integrin-dependent B cell actomyosin network drives immune synapse formation and B cell functions
整合素依赖性 B 细胞肌动球蛋白网络驱动免疫突触形成和 B 细胞功能
- 批准号:
546047-2020 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Postdoctoral Fellowships