Develop an Artificial Intelligence-powered Smartphone App AICaries for Caries Detection in Children

开发人工智能驱动的智能手机应用程序 AICaries,用于儿童龋齿检测

基本信息

  • 批准号:
    10331877
  • 负责人:
  • 金额:
    $ 23.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-02-01 至 2023-01-31
  • 项目状态:
    已结题

项目摘要

Project Summary Early childhood caries (ECC) is the most common chronic childhood disease, with nearly 1.8 billion new cases per year globally. ECC afflicts approximately 55% of low-income and minority US preschool children, resulting in harmful short- and long-term effects on health and quality of life. The current biomedical approach to control the ECC pandemic has had limited success. It primarily focuses on restorative procedures rather than population-wide preventive strategies. Clinical evidence shows that caries is reversible if detected and addressed in its early stages. However, many low-income US children often have poor access to pediatric dental services. In this underserved group, dental caries is often diagnosed at a late stage when extensive restorative treatment is needed. We believe that with more than 85% of lower-income Americans owning a smartphone, mHealth tools hold great promise to achieve patient-driven early detection and risk control of ECC. Our long-term goal is to develop strategies that use mHealth tools to achieve early detection and prevention of ECC at a broad population base. Our previous innovative work has led to a novel prototype of an artificial intelligence (AI) -powered smartphone app, AICaries, to be used by children's parents/caregivers. This AICaries app prototype offers a) AI-powered caries detection using photos of children's teeth taken by the parents' smartphones, b) interactive caries risk assessment, and c) personalized education on reducing children's ECC risk. The preliminary AI- powered caries detection module demonstrated a satisfactory sensitivity and specificity for front teeth caries detection, using 6,895 annotated tooth images from 1,277 photos. We have recently built an archive of > 100,000 high-quality intra-oral photos that is ready to be used for finalizing the development of a reliable automatic detection algorithm. The immediate objectives of the study are - AIM 1: complete the development of AICaries smartphone app, maximize its caries detection performance, and achieve a caries detection sensitivity and specificity that are comparable to trained dental practitioners; AIM 2: employ a community-based participatory research strategy to conduct moderated testing and refinement of the app usability, and non-moderated field testing of the app feasibility/acceptability. Our multidisciplinary team is well-positioned for proposal success with needed expertise in computer science, AI imaging recognition, oral health care, mHealth, disparity research, patient education and community engagement. The AICaries app could facilitate early detection of ECC for many underserved US children, who often have poor access to pediatric dental services. Using AICaries, parents can use their regular smartphones to take photo of their children’s teeth and detect ECC aided by AICaries, so that they can actively seek treatment for their children at an early and reversible stage of ECC. Using AICaries, parents can also obtain essential knowledge on reducing their children's caries risk. Data from this R21 will support a R01 clinical trial that evaluates the real-world impact of using this innovative smartphone app on early detection and prevention of ECC among low-income children.
项目摘要 幼儿龋齿(ECC)是最常见的慢性儿童疾病,有近18亿新发病例 每年全球。ECC折磨着大约55%的低收入和少数民族美国学龄前儿童, 对健康和生活质量的短期和长期有害影响。目前的生物医学控制方法 ECC大流行取得了有限成功。它主要侧重于恢复性程序,而不是 全民预防战略。临床证据表明,龋齿是可逆的,如果发现和解决 在其早期阶段。然而,许多低收入的美国儿童往往难以获得儿科牙科服务。 在这个服务不足的群体中,龋齿往往在广泛的修复治疗的后期才被诊断出来。 是必要的。我们认为,超过85%的低收入美国人拥有智能手机, 有望实现以患者为主导ECC的早期检测和风险控制。我们的长期目标是 制定使用移动健康工具的战略,以实现早期发现和预防广泛人群的ECC 基地我们之前的创新工作已经导致了一种新的人工智能(AI)驱动的原型, 智能手机应用程序AICaries,供儿童的父母/照顾者使用。这个AICaries应用程序原型提供了一个) 使用父母智能手机拍摄的儿童牙齿照片进行人工智能驱动的龋齿检测,B)互动 龋病风险评估,以及c)降低儿童ECC风险的个性化教育。初步的AI- 电动龋齿检测模块对前牙龋齿检测具有良好的敏感性和特异性 使用来自1,277张照片的6,895张注释牙齿图像进行检测。我们最近建立了一个> 100,000的档案 高质量的口内照片,可用于完成可靠的自动化开发 检测算法本研究的近期目标是-目标1:完成AICAries的开发 智能手机应用程序,最大限度地提高其龋齿检测性能,并实现龋齿检测灵敏度, 与训练有素的牙科医生相当的特异性;目标2:采用基于社区的参与性 研究策略,进行适度的测试和应用程序的可用性的改进,和非适度的领域 测试应用程序的可行性/可接受性。我们的多学科团队为提案做好了充分准备 凭借计算机科学、人工智能成像识别、口腔保健、移动健康等领域所需的专业知识取得成功, 差异研究、患者教育和社区参与。AICaries应用程序可以帮助早期 许多服务不足的美国儿童,他们往往难以获得儿科牙科检查, 服务使用AICaries,父母可以使用普通智能手机拍摄孩子的牙齿照片, 在AICaries的帮助下检测ECC,以便他们能够积极地为他们的孩子寻求早期和可逆的治疗, ECC阶段。家长亦可透过“爱龋宝”,获得有关减少子女患龋的基本知识 风险来自R21的数据将支持R 01临床试验,该试验评估了使用这种创新药物的现实影响。 智能手机应用程序,帮助低收入儿童及早发现和预防幼儿保育。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Artificial intelligence-powered smartphone application, AICaries, improves at-home dental caries screening in children: Moderated and unmoderated usability test
人工智能驱动的智能手机应用程序 AICaries 改善了儿童家庭龋齿筛查:有节制和无节制的可用性测试
  • DOI:
    10.1371/journal.pdig.0000046
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Al-Jallad, Nisreen;Ly-Mapes, Oriana;Hao, Peirong;Ruan, Jinlong;Ramesh, Ashwin;Luo, Jiebo;Wu, Tong Tong;Dye, Timothy;Rashwan, Noha;Ren, Johana
  • 通讯作者:
    Ren, Johana
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kevin Fiscella其他文献

Kevin Fiscella的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kevin Fiscella', 18)}}的其他基金

Identifying Successful Strategies for Implementing Team-Based Home Blood Pressure Monitoring in Primary Care
确定在初级保健中实施基于团队的家庭血压监测的成功策略
  • 批准号:
    10701721
  • 财政年份:
    2022
  • 资助金额:
    $ 23.1万
  • 项目类别:
Identifying Successful Strategies for Implementing Team-Based Home Blood Pressure Monitoring in Primary Care
确定在初级保健中实施基于团队的家庭血压监测的成功策略
  • 批准号:
    10474081
  • 财政年份:
    2022
  • 资助金额:
    $ 23.1万
  • 项目类别:
Identifying Successful Strategies for Implementing Team-Based Home Blood Pressure Monitoring in Primary Care
确定在初级保健中实施基于团队的家庭血压监测的成功策略
  • 批准号:
    10198144
  • 财政年份:
    2021
  • 资助金额:
    $ 23.1万
  • 项目类别:
Implementation Research: Translating the ABC's into HIV Care
实施研究:将 ABC 转化为艾滋病毒护理
  • 批准号:
    9978087
  • 财政年份:
    2018
  • 资助金额:
    $ 23.1万
  • 项目类别:
Blood Pressure-Visit Intensification for Successful Improvement of Treatment
加强血压就诊以成功改善治疗
  • 批准号:
    8474980
  • 财政年份:
    2013
  • 资助金额:
    $ 23.1万
  • 项目类别:
Translating Team Science into Primary Care: PCOR on teamwork in FQHCs
将团队科学转化为初级保健:PCOR 关于 FQHC 中的团队合作
  • 批准号:
    8706795
  • 财政年份:
    2013
  • 资助金额:
    $ 23.1万
  • 项目类别:
Addressing Disparities in Health Information through an FQHC-Library Partnership
通过 FQHC-图书馆合作伙伴关系解决健康信息的差异
  • 批准号:
    8729008
  • 财政年份:
    2013
  • 资助金额:
    $ 23.1万
  • 项目类别:
Blood Pressure-Visit Intensification for Successful Improvement of Treatment
加强血压就诊以成功改善治疗
  • 批准号:
    8889719
  • 财政年份:
    2013
  • 资助金额:
    $ 23.1万
  • 项目类别:
Translating Team Science into Primary Care: PCOR on teamwork in FQHCs
将团队科学转化为初级保健:PCOR 关于 FQHC 中的团队合作
  • 批准号:
    8599628
  • 财政年份:
    2013
  • 资助金额:
    $ 23.1万
  • 项目类别:
Blood Pressure-Visit Intensification for Successful Improvement of Treatment
加强血压就诊以成功改善治疗
  • 批准号:
    8725734
  • 财政年份:
    2013
  • 资助金额:
    $ 23.1万
  • 项目类别:

相似海外基金

Advisory Committees
咨询委员会
  • 批准号:
    7353899
  • 财政年份:
    2006
  • 资助金额:
    $ 23.1万
  • 项目类别:
Toward a Political Theory of Bioethics: Participation, Representation, and Deliberation on Federal Bioethics Advisory Committees
迈向生命伦理学的政治理论:联邦生命伦理学咨询委员会的参与、代表和审议
  • 批准号:
    0451289
  • 财政年份:
    2005
  • 资助金额:
    $ 23.1万
  • 项目类别:
    Standard Grant
Advisory Committees
咨询委员会
  • 批准号:
    7557224
  • 财政年份:
  • 资助金额:
    $ 23.1万
  • 项目类别:
Advisory Committees
咨询委员会
  • 批准号:
    7902286
  • 财政年份:
  • 资助金额:
    $ 23.1万
  • 项目类别:
Advisory Committees
咨询委员会
  • 批准号:
    7691385
  • 财政年份:
  • 资助金额:
    $ 23.1万
  • 项目类别:
Advisory Committees
咨询委员会
  • 批准号:
    8150373
  • 财政年份:
  • 资助金额:
    $ 23.1万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了