Link, transport, integrate: a Bayesian data integration framework for scalable algorithmic dementia classification in population-representative studies
链接、传输、集成:用于人口代表性研究中可扩展算法痴呆分类的贝叶斯数据集成框架
基本信息
- 批准号:10331823
- 负责人:
- 金额:$ 4.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-04 至 2023-07-03
- 项目状态:已结题
- 来源:
- 关键词:AddressAgingAlgorithmsAlzheimer&aposs DiseaseAlzheimer&aposs disease related dementiaAttentionBayesian AnalysisBayesian ModelingBiostatistical MethodsCharacteristicsClassificationClinicalClinical ResearchCognitionCognitiveCohort StudiesConsensusDataData LinkagesData SetDementiaDiagnosisDiseaseEthnic groupFellowshipFoundationsGoalsGoldGrantHealthHealth and Retirement StudyHourIncidenceInterviewJointsLanguageLinkLiteratureMeasuresMemoryMethodologyMethodsModelingMonitorNeuropsychologyOutcomeOutcome AssessmentParticipantPatternPerformancePersonsPopulationPopulation trendsPrevalenceProbabilityProcessProductionProtocols documentationPublic HealthResearchResearch PersonnelResearch Project GrantsResourcesReview LiteratureRisk FactorsSampling StudiesSourceSpecific qualifier valueStatistical ComputingStatistical MethodsStudy modelsTarget PopulationsTimeTrainingVisuospatialWorkadjudicationaging demographicalgorithm developmentalgorithm trainingbasecareerclassification algorithmclinical diagnosiscognitive testingcohortcostdata integrationdata modelingdirect applicationdisorder riskdisparity reductionexecutive functionflexibilityhealth goalsimprovedinsightinstrumentmultiple data sourcesperformance testspredictive modelingpreventracial and ethnicsociodemographic variablessociodemographicsstudy populationtooltrenduser friendly software
项目摘要
Project Summary
Nationally representative cohorts are crucial for monitoring population trends in incidence, prevalence, and
disparities in Alzheimer’s disease (AD) and Alzheimer’s disease-related dementias (ADRD), as well as for
understanding determinants of AD/ADRD. Clinical dementia diagnosis is a time- and resource- intensive
process that is impossible to perform in large population-representative cohorts. Algorithmic dementia
classification methods are often used as alternatives to this costly process. Current algorithms, however,
cannot be developed in cohorts that do not contain a subset of clinically diagnosed dementia cases, such as
the nationally representative National Health and Aging Trends Study (NHATS). Further, available methods
can only incorporate measures available for all participants they aim to classify. Thus, existing models cannot
be adapted to include newly available and more comprehensive cognitive data such as data from the 2016
Harmonized Cognitive Assessment Protocol (HCAP) Study. The goal of this proposal is to fill the need for
scalable algorithmic dementia ascertainment in population-representative cohort studies. We propose a flexible
Bayesian framework for algorithmic dementia classification, accomplished through the following aims: (1)
transport the HCAP detailed cognitive assessment battery to (a) the full HRS population and (b) the NHATS
population through data linkage and production of synthetic datasets and (2) develop a scalable model for
inferring person-specific dementia probabilities through Bayesian data integration of multiple data sources. In
Aim 1, we will create synthetic versions of HCAP cognitive assessment outcomes for each participant in HRS
and NHATS by modeling main effects of socio-demographic and health characteristics and their interaction
effects on cognitive test performance. In Aim 2, we will use a Bayesian framework to incorporate data from
multiple sources to model the main effects of socio-demographic, health characteristics, and cognitive test
performance (including synthetic data from Aim 1) and their interaction effects on dementia classifications.
Prior distributions will be specified for the effects of these predictors on the probability of dementia. Person-
specific dementia probabilities based on Bayesian inference will be used to estimate dementia incidence,
prevalence, and inferences about disparities in dementia patterns in the HRS and NHATS populations.
I am submitting this proposal to support my dissertation research which will produce a foundational body of
work for my career as a researcher in AD/ADRD. During this fellowship, I will receive specialized training in
advanced biostatistical methods and neuropsychological perspectives of AD/ADRD in both the clinical and
research settings. I will contribute to the literature on AD/ADRD with advancements in statistical methods and
create accessible statistical computing tools to aid efforts in accurate trend monitoring and building a
comprehensive understanding of risk factors and disparities in AD/ADRD. Advancing these aims is central to
the goal of developing effective strategies to prevent AD/ADRD and reduce disparities in the disease.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Crystal Shaw其他文献
Crystal Shaw的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Crystal Shaw', 18)}}的其他基金
Link, transport, integrate: a Bayesian data integration framework for scalable algorithmic dementia classification in population-representative studies
链接、传输、集成:用于人口代表性研究中可扩展算法痴呆分类的贝叶斯数据集成框架
- 批准号:
10400413 - 财政年份:2021
- 资助金额:
$ 4.93万 - 项目类别:
Link, transport, integrate: a Bayesian data integration framework for scalable algorithmic dementia classification in population-representative studies
链接、传输、集成:用于人口代表性研究中可扩展算法痴呆分类的贝叶斯数据集成框架
- 批准号:
10555237 - 财政年份:2021
- 资助金额:
$ 4.93万 - 项目类别:
相似海外基金
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 4.93万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 4.93万 - 项目类别:
Operating Grants
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
- 批准号:
10089306 - 财政年份:2024
- 资助金额:
$ 4.93万 - 项目类别:
Collaborative R&D
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
- 批准号:
23K20339 - 财政年份:2024
- 资助金额:
$ 4.93万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
- 批准号:
498310 - 财政年份:2024
- 资助金额:
$ 4.93万 - 项目类别:
Operating Grants
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
- 批准号:
2740736 - 财政年份:2024
- 资助金额:
$ 4.93万 - 项目类别:
Studentship
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 4.93万 - 项目类别:
Standard Grant
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
- 批准号:
2305890 - 财政年份:2024
- 资助金额:
$ 4.93万 - 项目类别:
Fellowship Award
虚弱高齢者のSuccessful Agingを支える地域課題分析指標と手法の確立
建立区域问题分析指标和方法,支持体弱老年人成功老龄化
- 批准号:
23K20355 - 财政年份:2024
- 资助金额:
$ 4.93万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
「ケア期間」に着目したbiological aging指標の開発
开发聚焦“护理期”的生物衰老指数
- 批准号:
23K24782 - 财政年份:2024
- 资助金额:
$ 4.93万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




