Core C: Comparative Pathology Core

核心 C:比较病理学核心

基本信息

  • 批准号:
    10333804
  • 负责人:
  • 金额:
    $ 30.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-15 至 2027-01-31
  • 项目状态:
    未结题

项目摘要

Project Summary The study of the preclinical animal models included in all four Projects plays a critical role to investigate the overall hypothesis that Proton/Carbon Particle FLASH Radiotherapy is superior to Standard Particle Radiotherapy in protecting normal tissues while maintaining equipotent malignant growth control. The extrapolation of robust preclinical data in these experimental settings relies heavily on the unbiased assessment of specific histopathological parameters to investigate the biological effects of FLASH particle radiotherapy as compared to Standard particle radiotherapy on designated neoplastic lesions and adjacent normal tissues. The Comparative Pathology Core (CPC; Core C) will provide its expertise contributing to the planning, evaluation, and interpretation of the pathology endpoints of the animal experiments included in the Projects. As a PennVet clinical laboratory, Core C importantly follows standardized working protocols with strict QA/QC procedures. The histopathology service offered by Core C will ensure accurate collection, proper preservation, timely processing, and staining of the animal specimens. Core C will provide the necessary technical support and submissions of tissue samples will follow a prioritized route. In addition to standard histopathology, Core C will also develop and validate tailored approaches to investigate and quantify tissue changes specifically associated with RT such as fibrosis, intralesional distribution of inflammatory/immune cell populations, expression of markers to evaluate epithelial barrier integrity, etc. The board-certified veterinary pathologists of Core C will deliver expert evaluation and unbiased interpretation of the pathology endpoints. Objective and reproducible quantification of tissue changes in response to the diverse RT modalities will be guaranteed by the application of validated scoring systems and the utilization of software-based algorithms for digital pathology and image analysis. Core pathologists have advanced training in digital imaging pathology from Leica pathology systems. Moreover, Dr. Assenmacher has collaborated with Leica in the development of analysis tools, lending him particular experience in the analytic modules of the digital pathology system.
项目概要 所有四个项目中包含的临床前动物模型的研究对于研究 质子/碳粒子闪光放射治疗优于标准粒子的总体假设 放射治疗可以保护正常组织,同时保持同等的恶性生长控制。这 在这些实验环境中对可靠的临床前数据进行推断在很大程度上依赖于无偏见的 评估特定组织病理学参数以研究 FLASH 颗粒的生物学效应 与标准粒子放射治疗相比,对指定的肿瘤病变和邻近的放射治疗 正常组织。比较病理学核心(CPC;核心 C)将提供其专业知识,为 计划、评估和解释动物实验的病理学终点 项目。作为 PennVet 临床实验室,Core C 重要的是遵循严格的标准化工作协议 质量保证/质量控制程序。 Core C提供的组织病理学服务将确保准确采集、正确 动物标本的保存、及时处理和染色。核心C将提供必要的 技术支持和组织样本的提交将遵循优先顺序。除了标准的 组织病理学方面,Core C 还将开发和验证定制的方法来研究和量化组织 与放疗特别相关的变化,例如纤维化、炎症/免疫细胞的病灶内分布 种群、评估上皮屏障完整性的标记物表达等。经过委员会认证的兽医 Core C 的病理学家将对病理学终点进行专家评估和公正的解释。 响应不同 RT 模式的组织变化的客观且可重复的量化将是 通过应用经过验证的评分系统和基于软件的算法来保证 用于数字病理学和图像分析。核心病理学家接受过数字成像病理学高级培训 来自徕卡病理系统。此外,Assenmacher 博士还与徕卡合作开发 分析工具的使用,使他在数字病理系统的分析模块方面拥有特殊的经验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Enrico Radaelli其他文献

Enrico Radaelli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Enrico Radaelli', 18)}}的其他基金

Core C: Comparative Pathology Core
核心 C:比较病理学核心
  • 批准号:
    10573310
  • 财政年份:
    2022
  • 资助金额:
    $ 30.35万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.35万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 30.35万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 30.35万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 30.35万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 30.35万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 30.35万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 30.35万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 30.35万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 30.35万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 30.35万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了