Protein Networks as Synergistic Drivers of Membrane Remodeling
蛋白质网络作为膜重塑的协同驱动因素
基本信息
- 批准号:10334421
- 负责人:
- 金额:$ 64.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AreaBehaviorBiological ProcessBiologyCell physiologyCellsClathrinCoupledDefectDiabetes MellitusDiseaseEndocytosisEventFilopodiaHumanIn VitroIndividualIntegral Membrane ProteinKnowledgeLiquid substanceMalignant NeoplasmsMediatingMembraneMembrane Protein TrafficMissionModelingMolecularNeedlesPathway interactionsPharmaceutical PreparationsPlayProteinsPublic HealthResearchRoleShapesStructureStructure-Activity RelationshipSurfaceTertiary Protein StructureTherapeuticUnited States National Institutes of HealthVesicleVirus ReplicationWorkdisabilitydriving forceflexibilityhuman diseaseinsightnervous system disordernovelpathogenpressurereceptor recyclingscaffoldtrafficking
项目摘要
Summary Abstract: Protein Networks as Synergistic Drivers of Membrane Remodeling
Membrane curvature is required for many cellular processes, from assembly of highly curved trafficking vesicles
to extension of needle-like filopodia. Consequently, defects in membrane curvature play a role in most human
diseases, including altered recycling of receptors in cancer and diabetes, targeting of filopodia by pathogens,
and hijacking of vesicle traffic during virus replication. Therefore, understanding the basic molecular mechanisms
that drive membrane remodeling is essential to our knowledge of cellular physiology and human disease.
Research on membrane curvature has primarily focused on individual protein domains with specialized
structures, such as crescent-shaped scaffolds and wedge-like amphipathic insertions. While this work has
provided invaluable insights, this “structure-centric” perspective ignores two essential facts. First, most
membrane remodeling proteins contain large intrinsically disordered domains in addition to structured domains.
And second these disordered domains drive assembly of large, multi-valent protein networks.
During the past 5 years, our group has made pioneering discoveries in support of the hypothesis
that disordered protein networks are essential drivers of membrane remodeling in the cell. Specifically,
using clathrin-mediated endocytosis as a model pathway, we showed that intrinsically disordered domains
generate steric pressure at membrane surfaces. This pressure provides a surprisingly potent driving force for
membrane bending, especially when coupled synergistically to the contributions of structured domains. This
work was the first to reveal the membrane remodeling abilities of disordered proteins, examples of which have
since been discovered in diverse areas of biology. Additionally, we have recently found that disordered domains
within endocytic proteins drive assembly of liquid-like protein networks which efficiently initiate endocytosis.
Importantly, this liquid-like behavior has the potential to resolve a long-standing paradox by explaining how
curved membrane structures can be simultaneously highly interconnected, yet dynamic and flexible.
These findings suggest urgent questions about the role of disordered protein networks in the key steps
of membrane remodeling: (i) initiation, (ii) curvature induction, and (iii) cargo selection. First, how do protein
networks initiate remodeling events, controlling their spatial and temporal dynamics? Second, once an event is
initiated, how do protein networks bend membranes, stabilizing either a convex or a concave shape? Third, as
the membrane bends, how does the protein network select cargo, such as transmembrane proteins, which are
essential to the structure’s biological function? Building on our recent discoveries, this work will shift the paradigm
for understanding membrane curvature beyond its present focus on in vitro structure-function relationships
toward an understanding of disordered protein networks. By demonstrating novel synergistic mechanisms, this
research will provide a blueprint for the study of protein networks at membrane surfaces throughout the cell.
摘要:蛋白质网络作为膜重塑的协同驱动因素
从高度弯曲的运输囊泡的组装开始,许多细胞过程都需要膜的曲率。
到针状丝状足的延伸。因此,膜弯曲缺陷在大多数人类中起作用。
疾病,包括癌症和糖尿病中受体循环的改变,病原体以丝状伪足为靶标,
以及在病毒复制期间劫持水泡流量。因此,理解基本的分子机制
驱动膜重塑对于我们对细胞生理学和人类疾病的了解是必不可少的。
膜曲率的研究主要集中在单个蛋白质结构域上,具有特殊的
结构,如新月形脚手架和楔形两亲性插入物。虽然这项工作已经
这种“以结构为中心”的观点提供了宝贵的见解,忽视了两个基本事实。第一,大多数
膜重塑蛋白除了含有结构域外,还含有较大的无序结构域。
其次,这些无序的结构域推动了大型多价蛋白质网络的组装。
在过去的5年里,我们团队取得了支持这一假说的开创性发现。
无序的蛋白质网络是细胞膜重塑的重要驱动因素。具体来说,
使用笼状蛋白介导的内吞作用作为模型途径,我们证明了本质上无序的结构域
在膜表面产生立体压力。这种压力提供了令人惊讶的强大推动力
膜弯曲,特别是当协同作用于结构域的作用时。这
这项工作首次揭示了无序蛋白质的膜重塑能力,例如
自那以后在生物学的各个领域都被发现了。此外,我们最近发现,无序的结构域
在内吞体内,蛋白质驱动液状蛋白质网络的组装,从而有效地启动内吞作用。
重要的是,这种类似液体的行为有可能通过解释如何解决一个长期存在的悖论
曲面膜结构可以同时高度相互连接,但又具有动态性和灵活性。
这些发现提出了关于无序的蛋白质网络在关键步骤中的作用的紧迫问题
膜重塑:(I)启动,(Ii)曲率诱导,(Iii)货物选择。首先,蛋白质是如何
网络启动重塑事件,控制其空间和时间动态?第二,一旦一个事件
蛋白质网络如何弯曲细胞膜,稳定凸形或凹形?第三,AS
膜弯曲,蛋白质网络如何选择货物,如跨膜蛋白,这些是
对这个结构的生物功能至关重要吗?在我们最新发现的基础上,这项工作将改变范式
为了了解膜的曲率,超越了目前对体外结构-功能关系的关注
有助于理解无序的蛋白质网络。通过展示新的协同机制,这
这项研究将为研究整个细胞膜表面的蛋白质网络提供蓝图。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeanne Casstevens Stachowiak其他文献
Jeanne Casstevens Stachowiak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeanne Casstevens Stachowiak', 18)}}的其他基金
Protein Networks as Synergistic Drivers of Membrane Remodeling
蛋白质网络作为膜重塑的协同驱动因素
- 批准号:
10555287 - 财政年份:2021
- 资助金额:
$ 64.32万 - 项目类别:
Protein Networks as Synergistic Drivers of Membrane Remodeling
蛋白质网络作为膜重塑的协同驱动因素
- 批准号:
10484247 - 财政年份:2021
- 资助金额:
$ 64.32万 - 项目类别:
Protein Networks as Synergistic Drivers of Membrane Remodeling
蛋白质网络作为膜重塑的协同驱动因素
- 批准号:
10728431 - 财政年份:2021
- 资助金额:
$ 64.32万 - 项目类别:
Intrinsically disordered proteins as physical drivers of membrane traffic
本质上无序的蛋白质作为膜交通的物理驱动因素
- 批准号:
9311934 - 财政年份:2017
- 资助金额:
$ 64.32万 - 项目类别:
Probing the Energetic Cost of Cargo Encapsulation in Coated Vesicles
探讨包被囊泡中货物封装的能量成本
- 批准号:
9111988 - 财政年份:2014
- 资助金额:
$ 64.32万 - 项目类别:
Probing the Energetic Cost of Cargo Encapsulation in Coated Vesicles
探讨包被囊泡中货物封装的能量成本
- 批准号:
9314585 - 财政年份:2014
- 资助金额:
$ 64.32万 - 项目类别:
Probing the Energetic Cost of Cargo Encapsulation in Coated Vesicles
探讨包被囊泡中货物封装的能量成本
- 批准号:
8767800 - 财政年份:2014
- 资助金额:
$ 64.32万 - 项目类别:
相似国自然基金
greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
$ 64.32万 - 项目类别:
Studentship
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
- 批准号:
2318855 - 财政年份:2024
- 资助金额:
$ 64.32万 - 项目类别:
Continuing Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
- 批准号:
2319848 - 财政年份:2024
- 资助金额:
$ 64.32万 - 项目类别:
Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
- 批准号:
2319849 - 财政年份:2024
- 资助金额:
$ 64.32万 - 项目类别:
Standard Grant
MCA Pilot PUI: From glomeruli to pollination: vertical integration of neural encoding through ecologically-relevant behavior
MCA Pilot PUI:从肾小球到授粉:通过生态相关行为进行神经编码的垂直整合
- 批准号:
2322310 - 财政年份:2024
- 资助金额:
$ 64.32万 - 项目类别:
Continuing Grant
CAREER: A cortex-basal forebrain loop enabling task-specific cognitive behavior
职业:皮层基底前脑环路实现特定任务的认知行为
- 批准号:
2337351 - 财政年份:2024
- 资助金额:
$ 64.32万 - 项目类别:
Continuing Grant
Conference: 2024 Photosensory Receptors and Signal Transduction GRC/GRS: Light-Dependent Molecular Mechanism, Cellular Response and Organismal Behavior
会议:2024光敏受体和信号转导GRC/GRS:光依赖性分子机制、细胞反应和生物体行为
- 批准号:
2402252 - 财政年份:2024
- 资助金额:
$ 64.32万 - 项目类别:
Standard Grant
Nanoscopic elucidation of dynamic behavior of RNA viral nucleocapsid proteins using high-speed atomic force microscopy (HS-AFM)
使用高速原子力显微镜 (HS-AFM) 纳米级阐明 RNA 病毒核衣壳蛋白的动态行为
- 批准号:
24K18449 - 财政年份:2024
- 资助金额:
$ 64.32万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERI: Data-Driven Analysis and Dynamic Modeling of Residential Power Demand Behavior: Using Long-Term Real-World Data from Rural Electric Systems
ERI:住宅电力需求行为的数据驱动分析和动态建模:使用农村电力系统的长期真实数据
- 批准号:
2301411 - 财政年份:2024
- 资助金额:
$ 64.32万 - 项目类别:
Standard Grant
Understanding the synthesis and electronic behavior of beta tungsten thin film materials
了解β钨薄膜材料的合成和电子行为
- 批准号:
23K20274 - 财政年份:2024
- 资助金额:
$ 64.32万 - 项目类别:
Grant-in-Aid for Scientific Research (B)