Investigation of Mechanosensory Signaling in the Pathogenesis of Traumatic Brain Injury in Human iPSC-derived Cortical Brain Organoids

人 iPSC 衍生的皮质脑类器官中机械感觉信号传导在创伤性脑损伤发病机制中的研究

基本信息

  • 批准号:
    10334475
  • 负责人:
  • 金额:
    $ 4.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-15 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract Global incidence of Traumatic Brain Injury (TBI) is on the rise, particularly among athletes, military personnel, and elderly citizens1. TBI represents a spectrum of mild to severe injuries that share many long-term pathologies and clinical symptoms such as Tau and TDP43 pathology, axonal injury, neuronal death, and increased risk of depression and neurodegenerative diseases2-6. Although end-stage pathologies are well characterized from post-mortem samples, the molecular mechanisms contributing to injury remain poorly understood in part due to the difficulty of studying live brains in human patients and the variable biophysical processes that occur between patients. As a result, available treatment options remain limited and are largely ineffective61. Previous studies of TBI conducted in animal models present with edema, inflammation, and blood-brain barrier disruption following an induced trauma6,7. Although important to the pathophysiology of TBI, this complex cascade of events complicates our ability to accurately understand cell autonomous injury mechanisms. Therefore, a reductionist system to study the response of distinct cell types to TBI would be beneficial for identifying and targeting changes that occur post-injury. To this end, we will utilize a 3-D cortical organoid culture system grown from human induced Pluripotent Stem Cells (iPSCs) to elucidate cell autonomous mechanisms of injury and degeneration caused by TBI8. We have developed a unique system of focused ultrasonic injury to mimic TBI in vitro which recapitulates key pathologic and transcriptional features of in vivo models. This allows for detailed study of both acute and chronic changes following an induced trauma, and provides a platform to integrate environmental and genetic contributions to injury while preserving human-specific biology. Using this system, we will combine bulk RNA-seq transcriptomic analysis with biochemical and immunoassays to uncover novel cell-type specific injury mechanisms. Using iPSC lines from patients with neurodegenerative diseases, we will test how TBI modulates genetically-induced disease mechanisms. Finally, we will test a mouse model of cortical controlled impact (CCI) to validate our findings in vivo. This proposal will greatly enhance our understanding of specific injury mechanisms in discrete cell types and may help to identify novel neuroprotective therapeutic targets.
项目摘要/摘要 全球创伤性脑损伤(TBI)的发病率正在上升,尤其是在运动员,军事人员中, 和老年公民1。 TBI代表了一系列有许多长期病理的轻度至重度伤害 以及临床症状,例如TAU和TDP43病理学,轴突损伤,神经元死亡以及增加的风险 抑郁和神经退行性疾病2-6。虽然终阶段的病理是从 验尸样本,导致损伤的分子机制的部分原因是 在人类患者中研究活体大脑的困难以及之间发生的可变生物物理过程 患者。结果,可用的治疗方案仍然有限,并且在很大程度上无效61。先前的研究 在存在水肿,炎症和血脑屏障破坏的动物模型中进行的TBI 诱导的创伤6,7。尽管对TBI的病理生理学很重要,但这种复杂的事件级联 使我们准确理解细胞自主损伤机制的能力变得复杂。因此,是一个还原主义者 研究不同细胞类型对TBI的响应的系统将有益于识别和靶向变化 发生后发生。为此,我们将利用从人类生长的3-D皮质器官培养系统 诱导多能干细胞(IPSC)阐明了损伤和变性的细胞自主机制 由TBI8引起。我们已经开发了一种独特的聚焦超声损伤系统,以模拟体外模仿TBI 概括体内模型的关键病理和转录特征。这允许对两者进行详细研究 诱发创伤后的急性和慢性变化,并提供了一个平台以整合环境和 在保留人类特异性生物学的同时,对损伤的遗传贡献。使用此系统,我们将结合体积 用生化和免疫测定的RNA-SEQ转录组分析发现新型细胞类型特异性损伤 机制。使用来自神经退行性疾病患者的IPSC线,我们将测试TBI如何调节 遗传引起的疾病机制。最后,我们将测试一个皮质控制撞击(CCI)的鼠标模型 在体内验证我们的发现。该建议将大大增强我们对特定伤害的理解 离散细胞类型中的机制,可能有助于鉴定新的神经保护性治疗靶标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joshua Berlind其他文献

Joshua Berlind的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joshua Berlind', 18)}}的其他基金

Investigation of Mechanosensory Signaling in the Pathogenesis of Traumatic Brain Injury in Human iPSC-derived Cortical Brain Organoids
人 iPSC 衍生的皮质脑类器官中机械感觉信号传导在创伤性脑损伤发病机制中的研究
  • 批准号:
    10548870
  • 财政年份:
    2021
  • 资助金额:
    $ 4.68万
  • 项目类别:

相似国自然基金

晚期妊娠维持和抑制早产中cAMP信号活化PR的作用机制研究
  • 批准号:
    81300507
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A physiological and translational liver model to study the metabolism-modulating roles of extracellular matrix microstructures
用于研究细胞外基质微结构的代谢调节作用的生理和转化肝脏模型
  • 批准号:
    10676333
  • 财政年份:
    2022
  • 资助金额:
    $ 4.68万
  • 项目类别:
Investigation of Mechanosensory Signaling in the Pathogenesis of Traumatic Brain Injury in Human iPSC-derived Cortical Brain Organoids
人 iPSC 衍生的皮质脑类器官中机械感觉信号传导在创伤性脑损伤发病机制中的研究
  • 批准号:
    10548870
  • 财政年份:
    2021
  • 资助金额:
    $ 4.68万
  • 项目类别:
Interplay between AMPK and Hippo Signaling Regulates Ocular Antiviral Response to Zika virus infection
AMPK 和 Hippo 信号传导之间的相互作用调节眼部对寨卡病毒感染的抗病毒反应
  • 批准号:
    10322026
  • 财政年份:
    2021
  • 资助金额:
    $ 4.68万
  • 项目类别:
Interplay between AMPK and Hippo Signaling Regulates Ocular Antiviral Response to Zika virus infection
AMPK 和 Hippo 信号传导之间的相互作用调节眼部对寨卡病毒感染的抗病毒反应
  • 批准号:
    10540701
  • 财政年份:
    2021
  • 资助金额:
    $ 4.68万
  • 项目类别:
Metabolic Landscape of the Aging Lung
衰老肺的代谢景观
  • 批准号:
    10396072
  • 财政年份:
    2020
  • 资助金额:
    $ 4.68万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了