Investigation of Mechanosensory Signaling in the Pathogenesis of Traumatic Brain Injury in Human iPSC-derived Cortical Brain Organoids
人 iPSC 衍生的皮质脑类器官中机械感觉信号传导在创伤性脑损伤发病机制中的研究
基本信息
- 批准号:10548870
- 负责人:
- 金额:$ 4.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-15 至 2023-04-24
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional5&apos-AMP-activated protein kinaseAcuteAnimal ModelAnimalsAntisense OligonucleotidesAnxietyAstrocytesAutopsyBiochemicalBiologyBiophysical ProcessBloodBrainCase StudyCationsCell LineCellsChemicalsChronicClinicalComplexDataDementiaDiffuse Axonal InjuryDiseaseEdemaElderlyEnvironmental Risk FactorEtiologyEventFocused Ultrasound TherapyFrontotemporal DementiaFunctional disorderGene ExpressionGeneral PopulationGeneticGenetic TranscriptionGoalsHumanImmunoassayImmunologic FactorsIn VitroIncidenceIndividualInflammationInjuryInvestigationMeasuresMechanicsMental DepressionMetabolic dysfunctionMilitary PersonnelModelingMolecularMusMutationNerve DegenerationNeurodegenerative DisordersNeuronal InjuryNeuronsOrganoidsOutcomePathogenesisPathologicPathologyPatientsPhenotypePhosphotransferasesProcessRiskRoleSamplingSignal TransductionSurvival RateSymptomsSystemTBI PatientsTDP-43 aggregationTestingTimeTissue ModelTransgenic MiceTraumaTraumatic Brain InjuryUltrasonicsUnited StatesWestern BlottingWorkaxon injuryblood-brain barrier disruptioncell injurycell typecontrolled cortical impactdementia riskdisabilitydisease-causing mutationhyperphosphorylated tauimprovedin vivoin vivo Modelinduced pluripotent stem cellinjuredinnovationinsightknock-downmechanotransductionmortalitymouse modelnerve stem cellneuron lossneuronal survivalneuroprotectionnew therapeutic targetnovelpreservationpressurepreventprogramsprotein TDP-43responsesevere injurytau Proteinstau aggregationtau-1therapeutic targettranscriptome sequencingtranscriptomics
项目摘要
Project Summary/Abstract
Global incidence of Traumatic Brain Injury (TBI) is on the rise, particularly among athletes, military personnel,
and elderly citizens1. TBI represents a spectrum of mild to severe injuries that share many long-term pathologies
and clinical symptoms such as Tau and TDP43 pathology, axonal injury, neuronal death, and increased risk of
depression and neurodegenerative diseases2-6. Although end-stage pathologies are well characterized from
post-mortem samples, the molecular mechanisms contributing to injury remain poorly understood in part due to
the difficulty of studying live brains in human patients and the variable biophysical processes that occur between
patients. As a result, available treatment options remain limited and are largely ineffective61. Previous studies of
TBI conducted in animal models present with edema, inflammation, and blood-brain barrier disruption following
an induced trauma6,7. Although important to the pathophysiology of TBI, this complex cascade of events
complicates our ability to accurately understand cell autonomous injury mechanisms. Therefore, a reductionist
system to study the response of distinct cell types to TBI would be beneficial for identifying and targeting changes
that occur post-injury. To this end, we will utilize a 3-D cortical organoid culture system grown from human
induced Pluripotent Stem Cells (iPSCs) to elucidate cell autonomous mechanisms of injury and degeneration
caused by TBI8. We have developed a unique system of focused ultrasonic injury to mimic TBI in vitro which
recapitulates key pathologic and transcriptional features of in vivo models. This allows for detailed study of both
acute and chronic changes following an induced trauma, and provides a platform to integrate environmental and
genetic contributions to injury while preserving human-specific biology. Using this system, we will combine bulk
RNA-seq transcriptomic analysis with biochemical and immunoassays to uncover novel cell-type specific injury
mechanisms. Using iPSC lines from patients with neurodegenerative diseases, we will test how TBI modulates
genetically-induced disease mechanisms. Finally, we will test a mouse model of cortical controlled impact (CCI)
to validate our findings in vivo. This proposal will greatly enhance our understanding of specific injury
mechanisms in discrete cell types and may help to identify novel neuroprotective therapeutic targets.
项目总结/摘要
创伤性脑损伤(TBI)的全球发病率正在上升,特别是在运动员,军事人员,
老年人1。TBI代表了一系列轻度至重度损伤,这些损伤具有许多长期病理学特征
和临床症状,如Tau和TDP 43病理学、轴突损伤、神经元死亡,以及增加的脑损伤风险。
抑郁症和神经退行性疾病2 -6。虽然终末期病理学的特征很好地从
尽管对死后样本的研究表明,导致损伤的分子机制仍然知之甚少,部分原因是
研究人类患者的活体大脑的困难,以及发生在患者之间的可变生物物理过程,
患者因此,可用的治疗选择仍然有限,而且基本上无效61。以往的研究
TBI在动物模型中进行,存在水肿、炎症和血脑屏障破坏,
诱发性创伤6,7.虽然对TBI的病理生理学很重要,但这种复杂的级联事件
使我们准确理解细胞自主损伤机制的能力变得复杂。因此,还原论者
研究不同细胞类型对TBI的反应的系统将有利于识别和靶向变化
发生在受伤后。为此,我们将利用从人类生长的3D皮质类器官培养系统,
诱导多能干细胞(iPSC),以阐明损伤和退化的细胞自主机制
由TBI 8引起。我们已经开发了一种独特的聚焦超声损伤系统来模拟体外TBI,
概括了体内模型的关键病理学和转录特征。这使得对两者的详细研究成为可能
急性和慢性变化后,诱导创伤,并提供了一个平台,整合环境和
基因对损伤的贡献,同时保留人类特有的生物学。利用这个系统,我们将联合收割机
RNA-seq转录组学分析与生物化学和免疫测定,以揭示新的细胞类型特异性损伤
机制等使用来自神经退行性疾病患者的iPSC细胞系,我们将测试TBI如何调节
遗传性疾病机制。最后,我们将测试皮质控制撞击(CCI)的小鼠模型。
来验证我们在体内的发现这一建议将大大加强我们对具体损害的理解
这可能有助于确定新的神经保护治疗靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joshua Berlind其他文献
Joshua Berlind的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joshua Berlind', 18)}}的其他基金
Investigation of Mechanosensory Signaling in the Pathogenesis of Traumatic Brain Injury in Human iPSC-derived Cortical Brain Organoids
人 iPSC 衍生的皮质脑类器官中机械感觉信号传导在创伤性脑损伤发病机制中的研究
- 批准号:
10334475 - 财政年份:2021
- 资助金额:
$ 4.23万 - 项目类别:
相似国自然基金
晚期妊娠维持和抑制早产中cAMP信号活化PR的作用机制研究
- 批准号:81300507
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
P1082 - Revealing Mercer 5's Pulsar Population with Parkes
P1082 - 揭秘默瑟 5
- 批准号:
Local : csiro:P1082 - 财政年份:
- 资助金额:
$ 4.23万 - 项目类别: