Harmonization for multisite Connectomics: parsing heterogeneity and creating markers in ASD

多站点连接组学的协调:解析 ASD 中的异质性并创建标记

基本信息

  • 批准号:
    10335117
  • 负责人:
  • 金额:
    $ 66.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-05-08 至 2024-01-31
  • 项目状态:
    已结题

项目摘要

Diffusion MRI (dMRI) provides a superior characterization of white matter and connectivity compared to other MRI modalities, and is routinely included in studies of disorders with atypical brain connectivity like autism spectrum disorder (ASD). The field could benefit tremendously from combining studies, to have comprehensive representation of the underlying heterogeneity in connectivity-based disorders. This is rendered challenging by dMRI being very sensitive to acquisition parameters, needing sophisticated statistical harmonization tools due to the complicated effect of scanner related changes. This also calls for a robust automated quality control (QC) protocol prior to data harmonization. Thus, in this proposal, we will develop tools to facilitate integration of dMRI data across studies. In Aim 1, we will develop and validate a deep learning based tool for automating QC for dMRI data that will identify different data artifacts (caused by multiple sources like scanner, coil, scan parameters, motion etc), and the appropriate action that needs to be taken (like motion and eddy correction). In Aim 2, we will develop a suite of tools for harmonizing dMRI measures to remove acquisition differences. The effectiveness of our proposed tools will be demonstrated by harmonizing ~1500 datasets (ages 6-32 years) from 11 ASD studies. These large harmonized datasets create the need for a subject-wise characterization of the sample and for diagnostic markers that harness the imaging heterogeneity of the larger harmonized sample. To address this new need, we will develop additional connectomic analysis tools, that will be adapted to ASD to create the CHARM (Connectomic Heterogeneity in Autism Research through Multi-site dMRI harmonization) suite comprising of a generalizable biomarker of ASD, as well as a dimensional connectomic coordinate system. In Aim 3, we will characterize each subject using a connectivity phenotype, cluster the integrated ASD sample based on this connectivity-phenotype, define a classifier for each cluster; and create a connectivity-based ensemble biomarker of ASD, called the CHARM-marker, combining these cluster-specific classifier decisions. Finally, in Aim 4, we will create a subject-wise characterization of ASD by designing a multi-dimensional connectomic coordinate system using metric learning, to quantify the dissimilarity of each subject from the harmonized healthy controls. We will elucidate the link of these CHARM-coordinates to ASD constructs, by correlating core ASD symptoms with the CHARM coordinates in the harmonized/combined sample. This will enable the ASD community to associate informative connectomic dimensions with each subject, facilitating subject-wise longitudinal assessment, paving the way for precision medicine. Such a group- based and subject-wise characterization of ASD could not have been possible without data integration. Additionally, the neuroimaging community will have new dMRI harmonization and connectomic analysis tools enabling the integration of studies for a more comprehensive connectomic investigation of existing data. It will pave the way for such studies in other connectivity-related disorders that affect mental health.
弥散磁共振成像(DMRI)对脑白质和连接性的定性优于其他成像技术 核磁共振成像,并经常被纳入自闭症等具有非典型脑连接障碍的研究中 谱系障碍(ASD)。该领域可以从综合研究中受益匪浅, 在基于连接性的障碍中表现潜在的异质性。这使得这一点具有挑战性 DMRI对采集参数非常敏感,需要复杂的统计协调工具 对扫描仪相关变化的复杂影响。这也需要强有力的自动化质量控制 (QC)数据统一之前的协议。因此,在这项提案中,我们将开发工具来促进 不同研究的dMRI数据。在目标1中,我们将开发并验证基于深度学习的QC自动化工具 对于将识别不同数据伪像的dMRI数据(由扫描仪、线圈、扫描等多个来源引起 参数、运动等)以及需要采取的适当动作(如运动和涡流校正)。在……里面 目标2,我们将开发一套工具来协调dMRI措施,以消除获取差异。这个 我们建议的工具的有效性将通过协调~1500个数据集(年龄为6-32岁)进行演示 来自11项自闭症研究。这些大型协调数据集产生了对主题的描述的需要 样本和诊断标记,以利用较大的协调图像的异质性 样本。为了满足这一新需求,我们将开发额外的连接分析工具,并对其进行调整 到ASD创造魅力(通过多点dMRI研究孤独症的连接性异质性) 协调)套件,包括ASD的可概括生物标记物以及维度连接 坐标系。在目标3中,我们将使用连接表型来描述每个受试者,将 基于这种连接性表型的集成ASD样本,为每个集群定义一个分类器;并创建 基于连接性的ASD集成生物标记,称为魅力标记,结合了这些特定于集群的标记 分类器决定。最后,在目标4中,我们将通过设计一个 使用度量学习的多维连通坐标系,以量化每个坐标系的差异性 受试者来自协调的健康对照。我们将阐明这些魅力坐标与ASD的联系 通过将核心ASD症状与协调/组合中的魅力坐标相关联来构建 样本。这将使ASD社区能够将信息性连接维度与每个 学科,促进学科纵向评估,为精准医学铺平道路。这样的一群人- 如果没有数据整合,就不可能对ASD进行以对象为基础的表征。 此外,神经成像社区将拥有新的dMRI协调和连接分析工具 能够整合研究,以便对现有数据进行更全面的连接调查。会的 为其他影响心理健康的连通性相关障碍的研究铺平道路。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ragini Verma其他文献

Ragini Verma的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ragini Verma', 18)}}的其他基金

Harmonization for multisite Connectomics: parsing heterogeneity and creating markers in ASD
多站点连接组学的协调:解析 ASD 中的异质性并创建标记
  • 批准号:
    10551257
  • 财政年份:
    2019
  • 资助金额:
    $ 66.91万
  • 项目类别:
Harmonization for multisite Connectomics: parsing heterogeneity and creating markers in ASD
多站点连接组学的协调:解析 ASD 中的异质性并创建标记
  • 批准号:
    10092221
  • 财政年份:
    2019
  • 资助金额:
    $ 66.91万
  • 项目类别:
Harmonization for multisite Connectomics: parsing heterogeneity and creating markers in ASD
多站点连接组学的协调:解析 ASD 中的异质性并创建标记
  • 批准号:
    9927671
  • 财政年份:
    2019
  • 资助金额:
    $ 66.91万
  • 项目类别:
Temporal connectomics for infant brain: neurodevelopment modulated by pathology
婴儿大脑的颞连接组学:病理学调节的神经发育
  • 批准号:
    9247655
  • 财政年份:
    2017
  • 资助金额:
    $ 66.91万
  • 项目类别:
Quantifiable markers of ASD via multivariate MEG-DTI combination
通过多元 MEG-DTI 组合可量化 ASD 标记
  • 批准号:
    8517891
  • 财政年份:
    2013
  • 资助金额:
    $ 66.91万
  • 项目类别:
Quantifiable markers of ASD via multivariate MEG-DTI combination
通过多元 MEG-DTI 组合可量化 ASD 标记
  • 批准号:
    8679003
  • 财政年份:
    2013
  • 资助金额:
    $ 66.91万
  • 项目类别:
Novel computational methods for higher order diffusion MRI in autism
自闭症高阶扩散 MRI 的新计算方法
  • 批准号:
    8722957
  • 财政年份:
    2010
  • 资助金额:
    $ 66.91万
  • 项目类别:
Novel computational methods for higher order diffusion MRI in autism
自闭症高阶扩散 MRI 的新计算方法
  • 批准号:
    8308691
  • 财政年份:
    2010
  • 资助金额:
    $ 66.91万
  • 项目类别:
Novel computational methods for higher order diffusion MRI in autism
自闭症高阶扩散 MRI 的新计算方法
  • 批准号:
    8517817
  • 财政年份:
    2010
  • 资助金额:
    $ 66.91万
  • 项目类别:
Novel computational methods for higher order diffusion MRI in autism
自闭症高阶扩散 MRI 的新计算方法
  • 批准号:
    8150423
  • 财政年份:
    2010
  • 资助金额:
    $ 66.91万
  • 项目类别:

相似海外基金

Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
  • 批准号:
    495182
  • 财政年份:
    2023
  • 资助金额:
    $ 66.91万
  • 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
  • 批准号:
    2601817
  • 财政年份:
    2021
  • 资助金额:
    $ 66.91万
  • 项目类别:
    Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
  • 批准号:
    2029039
  • 财政年份:
    2020
  • 资助金额:
    $ 66.91万
  • 项目类别:
    Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
  • 批准号:
    9888417
  • 财政年份:
    2019
  • 资助金额:
    $ 66.91万
  • 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
  • 批准号:
    17K11318
  • 财政年份:
    2017
  • 资助金额:
    $ 66.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    9320090
  • 财政年份:
    2017
  • 资助金额:
    $ 66.91万
  • 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    10166936
  • 财政年份:
    2017
  • 资助金额:
    $ 66.91万
  • 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    9761593
  • 财政年份:
    2017
  • 资助金额:
    $ 66.91万
  • 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
  • 批准号:
    BB/M50306X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 66.91万
  • 项目类别:
    Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
  • 批准号:
    288272
  • 财政年份:
    2013
  • 资助金额:
    $ 66.91万
  • 项目类别:
    Miscellaneous Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了