Harmonization for multisite Connectomics: parsing heterogeneity and creating markers in ASD
多站点连接组学的协调:解析 ASD 中的异质性并创建标记
基本信息
- 批准号:10092221
- 负责人:
- 金额:$ 69.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-08 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAgeAnisotropyArtificial IntelligenceAttention deficit hyperactivity disorderBehavioral GeneticsBiologicalBiological MarkersBiologyBrainBrain regionClinicalCognitiveCommunicationCommunitiesCustomDataData SetDiffuseDiffusion Magnetic Resonance ImagingDimensionsDiseaseEffectivenessFutureGoalsHeterogeneityImageIndividualInvestigationLearningLinkMagnetic Resonance ImagingMeasurementMeasuresMental HealthMethodsModalityMood DisordersMorphologic artifactsMotionPatientsPhenotypeProtocols documentationPsychosesQuality ControlResearchSample SizeSamplingScanningSiteSourceStructureSubgroupSymptomsSystemTissuesTrainingautism communityautism spectrum disorderbasedata harmonizationdata integrationdeep learningdesigndiagnostic biomarkerindexinglarge datasetsneuroimagingprecision medicinepreservationrepetitive behaviorsexsocialsuccesstoolwhite matter
项目摘要
Diffusion MRI (dMRI) provides a superior characterization of white matter and connectivity compared to other
MRI modalities, and is routinely included in studies of disorders with atypical brain connectivity like autism
spectrum disorder (ASD). The field could benefit tremendously from combining studies, to have comprehensive
representation of the underlying heterogeneity in connectivity-based disorders. This is rendered challenging by
dMRI being very sensitive to acquisition parameters, needing sophisticated statistical harmonization tools due
to the complicated effect of scanner related changes. This also calls for a robust automated quality control
(QC) protocol prior to data harmonization. Thus, in this proposal, we will develop tools to facilitate integration of
dMRI data across studies. In Aim 1, we will develop and validate a deep learning based tool for automating QC
for dMRI data that will identify different data artifacts (caused by multiple sources like scanner, coil, scan
parameters, motion etc), and the appropriate action that needs to be taken (like motion and eddy correction). In
Aim 2, we will develop a suite of tools for harmonizing dMRI measures to remove acquisition differences. The
effectiveness of our proposed tools will be demonstrated by harmonizing ~1500 datasets (ages 6-32 years)
from 11 ASD studies. These large harmonized datasets create the need for a subject-wise characterization of
the sample and for diagnostic markers that harness the imaging heterogeneity of the larger harmonized
sample. To address this new need, we will develop additional connectomic analysis tools, that will be adapted
to ASD to create the CHARM (Connectomic Heterogeneity in Autism Research through Multi-site dMRI
harmonization) suite comprising of a generalizable biomarker of ASD, as well as a dimensional connectomic
coordinate system. In Aim 3, we will characterize each subject using a connectivity phenotype, cluster the
integrated ASD sample based on this connectivity-phenotype, define a classifier for each cluster; and create a
connectivity-based ensemble biomarker of ASD, called the CHARM-marker, combining these cluster-specific
classifier decisions. Finally, in Aim 4, we will create a subject-wise characterization of ASD by designing a
multi-dimensional connectomic coordinate system using metric learning, to quantify the dissimilarity of each
subject from the harmonized healthy controls. We will elucidate the link of these CHARM-coordinates to ASD
constructs, by correlating core ASD symptoms with the CHARM coordinates in the harmonized/combined
sample. This will enable the ASD community to associate informative connectomic dimensions with each
subject, facilitating subject-wise longitudinal assessment, paving the way for precision medicine. Such a group-
based and subject-wise characterization of ASD could not have been possible without data integration.
Additionally, the neuroimaging community will have new dMRI harmonization and connectomic analysis tools
enabling the integration of studies for a more comprehensive connectomic investigation of existing data. It will
pave the way for such studies in other connectivity-related disorders that affect mental health.
弥散MRI(dMRI)提供了白色物质和连通性的上级表征,与其他MRI相比,
磁共振成像模式,并经常包括在研究与非典型的大脑连接的障碍,如自闭症
谱系障碍(ASD)。该领域可以从结合研究中受益匪浅,
在连接性障碍的基础异质性的代表性。这是具有挑战性的,
dMRI对采集参数非常敏感,需要复杂的统计协调工具,
扫描仪相关变化的复杂影响。这也需要强大的自动化质量控制
(QC)数据协调之前的协议。因此,在本提案中,我们将开发工具,以促进
研究中的dMRI数据。在目标1中,我们将开发和验证基于深度学习的自动化QC工具
对于将识别不同数据伪影的dMRI数据(由扫描仪、线圈、扫描等多个源引起
参数、运动等),以及需要采取的适当动作(如运动和涡流校正)。在
目标2,我们将开发一套工具,用于协调dMRI测量,以消除采集差异。的
我们提出的工具的有效性将通过协调约1500个数据集(年龄6-32岁)来证明
11篇ASD研究这些大型协调数据集需要对以下内容进行主题表征:
样品和诊断标记物利用较大的协调的
sample.为了满足这一新的需求,我们将开发额外的连接组学分析工具,
ASD创建CHARM(通过多位点dMRI进行自闭症研究的连接组异质性)
协调)套件,其包含ASD的可推广生物标志物,以及维度连接组学(dimensional connectomic)。
坐标系在目标3中,我们将使用连接表型来表征每个主题,
基于该连接性表型的集成ASD样本,为每个聚类定义分类器;并创建
ASD的基于连接性的整体生物标志物,称为CHARM标志物,结合这些簇特异性
分类器决策最后,在目标4中,我们将通过设计一个
使用度量学习的多维连接组坐标系统,以量化每个连接组坐标系统的相异性。
来自协调健康对照的受试者。我们将阐明这些CHARM坐标与ASD的联系
通过将核心ASD症状与协调/组合中的CHARM坐标相关联,
sample.这将使ASD社区能够将信息连接组学维度与每个
这有助于对受试者进行纵向评估,为精准医疗铺平道路。这样一个群体-
如果没有数据集成,ASD的基于主题的表征是不可能的。
此外,神经影像学界将有新的dMRI协调和连接组学分析工具
使得能够整合研究以用于现有数据的更全面的连接组学调查。它将
为其他影响心理健康的与连接有关的疾病的研究铺平道路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ragini Verma其他文献
Ragini Verma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ragini Verma', 18)}}的其他基金
Harmonization for multisite Connectomics: parsing heterogeneity and creating markers in ASD
多站点连接组学的协调:解析 ASD 中的异质性并创建标记
- 批准号:
10551257 - 财政年份:2019
- 资助金额:
$ 69.04万 - 项目类别:
Harmonization for multisite Connectomics: parsing heterogeneity and creating markers in ASD
多站点连接组学的协调:解析 ASD 中的异质性并创建标记
- 批准号:
9927671 - 财政年份:2019
- 资助金额:
$ 69.04万 - 项目类别:
Harmonization for multisite Connectomics: parsing heterogeneity and creating markers in ASD
多站点连接组学的协调:解析 ASD 中的异质性并创建标记
- 批准号:
10335117 - 财政年份:2019
- 资助金额:
$ 69.04万 - 项目类别:
Temporal connectomics for infant brain: neurodevelopment modulated by pathology
婴儿大脑的颞连接组学:病理学调节的神经发育
- 批准号:
9247655 - 财政年份:2017
- 资助金额:
$ 69.04万 - 项目类别:
Quantifiable markers of ASD via multivariate MEG-DTI combination
通过多元 MEG-DTI 组合可量化 ASD 标记
- 批准号:
8517891 - 财政年份:2013
- 资助金额:
$ 69.04万 - 项目类别:
Quantifiable markers of ASD via multivariate MEG-DTI combination
通过多元 MEG-DTI 组合可量化 ASD 标记
- 批准号:
8679003 - 财政年份:2013
- 资助金额:
$ 69.04万 - 项目类别:
Novel computational methods for higher order diffusion MRI in autism
自闭症高阶扩散 MRI 的新计算方法
- 批准号:
8722957 - 财政年份:2010
- 资助金额:
$ 69.04万 - 项目类别:
Novel computational methods for higher order diffusion MRI in autism
自闭症高阶扩散 MRI 的新计算方法
- 批准号:
8308691 - 财政年份:2010
- 资助金额:
$ 69.04万 - 项目类别:
Novel computational methods for higher order diffusion MRI in autism
自闭症高阶扩散 MRI 的新计算方法
- 批准号:
8517817 - 财政年份:2010
- 资助金额:
$ 69.04万 - 项目类别:
Novel computational methods for higher order diffusion MRI in autism
自闭症高阶扩散 MRI 的新计算方法
- 批准号:
8150423 - 财政年份:2010
- 资助金额:
$ 69.04万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 69.04万 - 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
- 批准号:
2601817 - 财政年份:2021
- 资助金额:
$ 69.04万 - 项目类别:
Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
- 批准号:
2029039 - 财政年份:2020
- 资助金额:
$ 69.04万 - 项目类别:
Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
- 批准号:
9888417 - 财政年份:2019
- 资助金额:
$ 69.04万 - 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
- 批准号:
17K11318 - 财政年份:2017
- 资助金额:
$ 69.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 69.04万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 69.04万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 69.04万 - 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
- 批准号:
BB/M50306X/1 - 财政年份:2014
- 资助金额:
$ 69.04万 - 项目类别:
Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
- 批准号:
288272 - 财政年份:2013
- 资助金额:
$ 69.04万 - 项目类别:
Miscellaneous Programs