Uncovering Mechanisms of PFAS Adsorption by Granular Activated Carbon to Support PFAS Remediation
揭示颗粒活性炭吸附 PFAS 的机制以支持 PFAS 修复
基本信息
- 批准号:10337311
- 负责人:
- 金额:$ 9.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-28 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdsorptionAffectAirCarbonCharacteristicsCommunitiesConsumptionCoupledDataDevelopmentDiffusionDimensionsEffectivenessElectron energy loss spectroscopyEnvironmental Engineering technologyEnvironmental HealthEnvironmental PollutionEnvironmental ScienceEnvironmental sludgeEquilibriumEvaluationExcisionFilmFoundationsGoalsGuidelinesHealthIndustrializationIsotopesKineticsLaboratoriesLifeLinkMass Spectrum AnalysisMicroscopyModelingMunicipalitiesNorth CarolinaParticle SizePenetrationPersonsPlantsPoly-fluoroalkyl substancesPreventiveProcessProductionPropertyPublic HealthRadialResearchResearch Project GrantsScanning Electron MicroscopyScanning Tunneling MicroscopyServicesSewageSiteSourceSumSuperfundSurfaceSystemTechnologyTestingTimeUnited StatesUniversitiesX ray spectrometryaqueouscommunity engagementcontaminated drinking watercostcost effectivedesigndrinking waterexperimental studyexposed human populationimprovedinnovationinsightion mobilitylaboratory experimentlandfillmathematical modelorganic contaminantparticleperfluorooctane sulfonateperfluorooctanoic acidpollutantpredictive modelingprogramsremediationscale up
项目摘要
ABSTRACT
(Environmental Science and Engineering) Research Project 4
Project 4 is one of two Environmental Science and Engineering (ESE) Research Projects for the proposed
“Center for Environmental and Health Effects of PFAS” being led by North Carolina State University (NC
State). The primary goal of the proposed Center is to provide highly relevant data and information to help the
Superfund Research Program (SRP) address the growing problem of per- and polyfluoroalkyl substance
(PFAS) contamination across the US, including contamination of drinking water sources. PFAS are considered
contaminants of emerging concern, and remediation of PFAS-impacted sites is a critical and timely public
health challenge. Granular activated carbon (GAC) adsorption is the most widely employed PFAS remediation
technology. Although much is known about sorption of organic contaminants by GAC, predicting GAC
effectiveness from laboratory data or from fundamental pollutant and GAC properties remains a significant
challenge. Our long-term objective is to develop models that predict sorption of organic micropollutants,
including PFAS, in GAC treatment systems. A critical barrier to improving existing models is that accessibility
of sorption sites inside of GAC particles is not known. An important assumption of current models is that
contaminants are uniformly distributed inside of GAC particles at sorption equilibrium. However, direct
observations of sorbed contaminants suggest that sorption can occur preferentially near the external sorbent
surface. This distinction is significant because it can explain why PFAS sorption capacity increases with
decreasing GAC particle size and why laboratory experiments overestimate PFAS removal effectiveness of
GAC. Our overarching hypothesis is, therefore, that sorption of PFAS (as well as many other organic
pollutants) occurs preferentially in a shell region near the external GAC surface. The shell adsorption
hypothesis will be evaluated by (Aim 1) observing and describing intraparticle PFAS distributions at sorption
equilibrium and (Aim 2) quantifying and describing PFAS adsorption/desorption kinetics. Using innovative
approaches, such as isotope microscopy, we will begin to open the “black box” that GAC still represents and
directly observe intraparticle PFAS distributions. We will use information from direct observations in
conjunction with results from sorption equilibrium and kinetic experiments to explain our data with a shell
adsorption model. We expect that model parameters will be physically meaningful and can be predicted from
fundamental sorbent and sorbate properties. Results of this project will support the development of effective
sorbents for PFAS removal, the design of (cost-)effective GAC treatment systems for PFAS remediation, and
the evaluation of management options for spent GAC.
抽象的
(环境科学与工程)研究项目4
项目 4 是拟议的两个环境科学与工程 (ESE) 研究项目之一
由北卡罗来纳州立大学 (NC) 领导的“PFAS 环境与健康影响中心”
状态)。拟议中心的主要目标是提供高度相关的数据和信息,以帮助
超级基金研究计划 (SRP) 解决日益严重的全氟烷基和多氟烷基物质问题
(PFAS)污染遍布美国,包括饮用水源的污染。 PFAS 被考虑
PFAS 影响场所的修复是一项重要且及时的公众关注的污染物
健康挑战。颗粒活性炭 (GAC) 吸附是应用最广泛的 PFAS 修复方法
技术。尽管人们对 GAC 对有机污染物的吸附了解很多,但预测 GAC
实验室数据或基本污染物和 GAC 特性的有效性仍然是一个重要因素
挑战。我们的长期目标是开发预测有机微污染物吸附的模型,
包括 GAC 处理系统中的 PFAS。改进现有模型的一个关键障碍是可访问性
GAC 颗粒内部的吸附位点尚不清楚。当前模型的一个重要假设是
污染物在吸附平衡时均匀分布在活性炭颗粒内部。不过,直接
对吸附污染物的观察表明,吸附可能优先发生在外部吸附剂附近
表面。这种区别很重要,因为它可以解释为什么 PFAS 吸附能力随着
减少 GAC 颗粒尺寸以及为什么实验室实验高估了 PFAS 的去除效果
广汽集团。因此,我们的首要假设是,PFAS(以及许多其他有机污染物)的吸附
污染物)优先发生在靠近 GAC 外表面的壳区域。外壳吸附
将通过(目标 1)观察和描述吸附时颗粒内 PFAS 分布来评估假设
平衡和(目标 2)量化和描述 PFAS 吸附/解吸动力学。采用创新的
方法,例如同位素显微镜,我们将开始打开 GAC 仍然代表的“黑匣子”,
直接观察颗粒内PFAS分布。我们将使用来自直接观察的信息
结合吸附平衡和动力学实验的结果来解释我们的壳数据
吸附模型。我们期望模型参数具有物理意义并且可以通过以下方式进行预测
吸附剂和吸附物的基本特性。该项目的结果将支持有效的开发
用于去除 PFAS 的吸附剂、用于 PFAS 修复的(经济)有效的 GAC 处理系统的设计,以及
对已用完的 GAC 的管理选项进行评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Detlef R Knappe其他文献
Detlef R Knappe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Detlef R Knappe', 18)}}的其他基金
Uncovering Mechanisms of PFAS Adsorption by Granular Activated Carbon to Support PFAS Remediation
揭示颗粒活性炭吸附 PFAS 的机制以支持 PFAS 修复
- 批准号:
10559579 - 财政年份:2022
- 资助金额:
$ 9.81万 - 项目类别:
Center for Environmental and Health Effects of PFAS
PFAS 环境与健康影响中心
- 批准号:
10558144 - 财政年份:2020
- 资助金额:
$ 9.81万 - 项目类别:
Center for Environmental and Health Effects of PFAS
PFAS 环境与健康影响中心
- 批准号:
10115849 - 财政年份:2020
- 资助金额:
$ 9.81万 - 项目类别:
相似海外基金
Molecular Simulations of Additive Self-Assembly, Rheology, and Surface Adsorption in Complex Fluids
复杂流体中添加剂自组装、流变学和表面吸附的分子模拟
- 批准号:
2901619 - 财政年份:2024
- 资助金额:
$ 9.81万 - 项目类别:
Studentship
An Adsorption-Compression Cold Thermal Energy Storage System (ACCESS)
吸附压缩冷热能存储系统(ACCESS)
- 批准号:
EP/W027593/2 - 财政年份:2024
- 资助金额:
$ 9.81万 - 项目类别:
Research Grant
Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
- 批准号:
24K17729 - 财政年份:2024
- 资助金额:
$ 9.81万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Thermal stability of adsorption solar power plants
吸附式太阳能发电厂的热稳定性
- 批准号:
2871817 - 财政年份:2024
- 资助金额:
$ 9.81万 - 项目类别:
Studentship
Computational Studies of Gas Adsorption in Special Nuclear Materials (SNMs).
特殊核材料(SNM)中气体吸附的计算研究。
- 批准号:
2903366 - 财政年份:2024
- 资助金额:
$ 9.81万 - 项目类别:
Studentship
Collaborative Research: Integrated experiments and simulations to understand the mechanism and consequences of polymer adsorption in films and nanocomposites
合作研究:综合实验和模拟来了解薄膜和纳米复合材料中聚合物吸附的机制和后果
- 批准号:
2312325 - 财政年份:2023
- 资助金额:
$ 9.81万 - 项目类别:
Standard Grant
Metal tolerance and metal adsorption through phycosphere control
通过藻圈控制实现金属耐受性和金属吸附
- 批准号:
23H02303 - 财政年份:2023
- 资助金额:
$ 9.81万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Investigation of adsorption of exosomes on porous materials and regulating the behavior to create separation, purification and preservation techniques
研究外泌体在多孔材料上的吸附并调节行为以创建分离、纯化和保存技术
- 批准号:
23KJ0192 - 财政年份:2023
- 资助金额:
$ 9.81万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Reflection and adsorption of low energy hydrogen on solid surface
低能氢在固体表面的反射与吸附
- 批准号:
23H01158 - 财政年份:2023
- 资助金额:
$ 9.81万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Super-Resolution Imaging of Surface Adsorption on Single Nanoparticles for Electrochemical Dechlorination
用于电化学脱氯的单个纳米颗粒表面吸附的超分辨率成像
- 批准号:
2303933 - 财政年份:2023
- 资助金额:
$ 9.81万 - 项目类别:
Standard Grant














{{item.name}}会员




