Ex vivo analysis of human brain tumor cells in a microvascular niche model
微血管生态位模型中人脑肿瘤细胞的离体分析
基本信息
- 批准号:10339325
- 负责人:
- 金额:$ 52.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-04 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAnimal ModelAnimalsBiocompatible MaterialsBiologicalBiological AssayBiologyBiomedical EngineeringBone MarrowBrainBrain NeoplasmsCancer BiologyCancer CenterCell Culture TechniquesCellsCerebrovascular systemClinicClinical DataCoculture TechniquesDataDevelopmentDiseaseDisease ProgressionDistantDrug Delivery SystemsEnvironmentGelGenetic TranscriptionGlioblastomaGliomaHeterogeneityHumanIn VitroIndividualInfiltrationLaboratoriesLibrariesLinkMaintenanceMalignant NeoplasmsMalignant neoplasm of brainMeasuresMicrofluidicsModelingMolecularMolecular BiologyMotivationOncologyPathologicPathologyPatientsPericytesPerivascular NeoplasmPharmaceutical PreparationsPhenotypePilot ProjectsPrimary Brain NeoplasmsPrimary NeoplasmPrognosisProliferatingPropertyProteomicsRelapseReproducibilityResistance developmentResolutionSamplingSpecimenStructureSystemTechnologyTestingTissue EngineeringTrainingTumor Cell MigrationTumor Stem CellsTumor SubtypeUniversitiesangiogenesiscell behaviorcell typechemotherapyclinical applicationcohortcostdrug testingexperiencegenetic signatureimprovedin vitro Modelin vivo Modelinterestleukemic stem cellmedical schoolsmicrosystemsmid-career facultymigrationmind controlmouse modelmultidisciplinaryneoplastic cellneuropathologyneurosurgerynovelpatient derived xenograft modelpatient prognosisprecision drugsprecision medicinepredict clinical outcomereal time monitoringresponseself-renewalsingle cell analysissingle-cell RNA sequencingsmall moleculestem cellsstem-like cellsuccesssynergismtargeted treatmenttherapy resistanttranscriptometranscriptome sequencingtranscriptomicstreatment stratificationtumortumor heterogeneity
项目摘要
PROJECT SUMMARY
The region near the brain vasculature in human brain tumors, called the perivascular niche (PVN), is an
important microenvironment for the maintenance of brain tumor stem-like cells (BTSCs), the development of
resistance to chemo or targeted therapies, and the path for tumor infiltration to distant regions in the whole
brain, leading to incurable diseases. Current in vitro models such as 2D cell cultures or 3D tumor spheroids do
not contain this niche environment. Mouse models of brain tumors can recapitulate some aspects of the PVN,
but have challenges in terms of costly assays, low throughput, and lack of the ability for high-resolution live cell
tracking of BTSC dynamics. Herein, we propose to develop a tissue-engineered 3D microvascular niche-on-a-
chip model that can incorporate primary brain tumor cells from patients in order to bridge this gap between in
vitro and in vivo models. Our pilot study has demonstrated the success in co-culture of patient-derived
glioblastoma cells and microvasculature in a microfluidic gel system and observed preferential localization of
BTSCs in the PVN. Comparing ex vivo dynamics of individual tumor cells on-chip to single-cell transcriptomes
across 10 patients further revealed a correlation between perivascular localization and transcriptional subtypes.
In this project, we propose to further examine tumor cell migration and localization using a larger cohort of
patient specimens and compare the results to pathological and clinical data, aiming to develop it into an ex vivo
functional assay for patient prognosis and subclassification (Aim 1). We will apply scRNA-seq to the same
samples to generate correlative data to identify subtypes associated with distinct ex vivo dynamics in the
tissue-engineered PVN model, which can help elucidate the molecular mechanisms of PVN in tumor cell fate
and invasion (Aim 2). Finally, we will investigate the response of tumor cells in PVN to chemo and targeted
therapies administered through the perfusable microvascular network to assess the potential to perform
personalized drug test and therapeutic stratification (Aim 3). This project will lead to a novel tissue-engineered
microsystem to not only study the biology of PVN in human brain tumor development but also develop new
assays for ex vivo test of human tumor cells for precision medicine.
项目总结
人脑肿瘤中靠近脑血管的区域,称为血管周围龛(PVN),是一种
脑肿瘤干细胞维持的重要微环境
对化疗或靶向治疗的抵抗力,以及肿瘤向整个遥远地区渗透的途径
大脑,导致不治之症。目前的体外模型,如2D细胞培养或3D肿瘤球体可以
而不是包含这种利基环境。小鼠脑瘤模型可以概括PVN的某些方面,
但在检测昂贵、产量低以及缺乏高分辨率活细胞的能力方面存在挑战
BTSC动态跟踪。在这里,我们建议开发一种组织工程化的3D微血管壁龛-on-a-a-
一种芯片模型,可以整合来自患者的原始脑瘤细胞,以弥合
体外和体内模型。我们的初步研究已经证明了患者来源的共培养的成功。
微流控凝胶系统中胶质母细胞瘤细胞和微血管构筑的研究
室旁核内的BTSCs。芯片上单个肿瘤细胞与单细胞转录本的体外动力学比较
进一步揭示了血管周围定位和转录亚型之间的相关性。
在这个项目中,我们建议进一步研究肿瘤细胞的迁移和定位,使用更大的队列
并将结果与病理和临床数据进行比较,旨在将其发展为体外实验。
患者预后和亚型的功能分析(目标1)。我们将scRNA-seq应用于相同的
样本以生成相关数据,以确定与不同的体外动力学相关的亚型
组织工程化PVN模型,有助于阐明PVN影响肿瘤细胞命运的分子机制
和入侵(目标2)。最后,我们将研究PVN中的肿瘤细胞对化疗和靶向的反应。
通过可灌流的微血管网络进行治疗以评估执行
个性化药物测试和治疗分层(目标3)。该项目将导致一种新的组织工程化
微系统不仅研究PVN在人脑肿瘤发生中的生物学作用,还将开发新的
精密医学人体肿瘤细胞体外试验方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rong Fan其他文献
Rong Fan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rong Fan', 18)}}的其他基金
Highly scalable and sensitive spatial transcriptomic and epigenomic sequencing of brain tissues from human and non-human primate
对人类和非人类灵长类动物的脑组织进行高度可扩展且灵敏的空间转录组和表观基因组测序
- 批准号:
10370074 - 财政年份:2021
- 资助金额:
$ 52.67万 - 项目类别:
Defining Epigenetic States of Senescent Cells and Associated Tissue Environments in the Human Lymphoid Tissues
定义人类淋巴组织中衰老细胞和相关组织环境的表观遗传状态
- 批准号:
10666979 - 财政年份:2021
- 资助金额:
$ 52.67万 - 项目类别:
Yale TMC for Cellular Senescence in Lymphoid Organs
耶鲁大学 TMC 研究淋巴器官细胞衰老
- 批准号:
10384399 - 财政年份:2021
- 资助金额:
$ 52.67万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 52.67万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 52.67万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 52.67万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 52.67万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 52.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 52.67万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 52.67万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 52.67万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 52.67万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 52.67万 - 项目类别:
Grant-in-Aid for Early-Career Scientists