Oral Dysplasia and Oral Cavity Cancer Risk in Dental and Medical Surveillance Settings Using a Chairside Chip-Based Cytopathology Tool
使用基于椅旁芯片的细胞病理学工具评估牙科和医疗监测环境中的口腔发育不良和口腔癌风险
基本信息
- 批准号:10344966
- 负责人:
- 金额:$ 76.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-07 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:ActinsAgreementAlgorithmic SoftwareAlgorithmsArtificial IntelligenceBiological AssayBiological MarkersBiopsyCD34 geneCarcinomaCell-Matrix JunctionCellsClassificationClinicalClinical PathwaysClinical ResearchConsensusCytologyCytopathologyDataData SourcesDatabasesDentalDiagnosisDiagnosticDiseaseDisease ProgressionEarly DiagnosisEarly identificationEpidermal Growth Factor ReceptorEvolutionExcisionF-ActinGoalsGoldHealthHistopathologyImageImage CytometryIncidenceIndividualInstitutionIntraepithelial NeoplasiaLeadLesionLip structureLiteratureLocalized Malignant NeoplasmLongitudinal cohort studyMalignant - descriptorMalignant neoplasm of pharynxMeasurementMeasuresMedical SurveillanceMicrofluidicsModelingMonitorNational Institute of Dental and Craniofacial ResearchNuclearOperative Surgical ProceduresOral cavityPathway interactionsPatient MonitoringPatient-Focused OutcomesPatientsPerformancePersonsPhenotypePloidiesPopulationPopulation SurveillancePredictive ValueProspective cohort studyProtocols documentationQuality of lifeQuestionnairesRecording of previous eventsRecurrenceRiskSamplingSeriesSeverity of illnessSpecimenSpeedSurveysSystemTechnologyTimeTreatment outcomeTrustValidationVisitVisualbasecancer diagnosiscancer recurrencecancer riskcell typecellular imagingdata acquisitiondata streamsdeep learningdeep learning algorithmdiagnostic technologiesdiagnostic toolexperiencehigh riskimaging agentimprovedindexingindividual patientinsightinstrumentmalignant mouth neoplasmmouth squamous cell carcinomamultimodalityoral careoral cavity epitheliumoral dysplasiaoral lesionpatient populationpersonalized diagnosticspoint of careportabilitypredictive modelingpreferenceprognostic valueprogrammed cell death ligand 1prospectiverate of changerisk predictionscalpelsingle cell analysistargeted imagingtertiary caretime usetool
项目摘要
ABSTRACT
In the US, approximately 50,000 oral and pharyngeal cancers (OPCs) are diagnosed annually
(10/100,000 incidence). Further, oral epithelial dysplasia (OED) is about 15 times more common than OPC.
Patients diagnosed with OED are known to be at risk for malignant transformation (MT), and those treated for
oral squamous cell carcinoma (OSCC) are known to be at elevated risk for cancer recurrence (CR). There is
little consensus about the optimal clinical surveillance pathways for these patients. Individuals with a history of
OSCC and potentially malignant oral lesions (PMOLs) harboring OED/OSCC can have widely variable clinical
presentation that overlaps with oral lesions of no malignant potential. Thus, clinicians may be reluctant to perform
serial scalpel biopsies on these patients. Commercially available diagnostic adjuncts lack adequate clinical
validation across the lesion disease spectrum. When OSCC or high-grade OED is diagnosed early, there is an
opportunity to provide appropriate timely treatment, and patient outcomes can improve dramatically. Thus, there
is a compelling need for new highly effective non-invasive precision oral lesion diagnostic technologies that can
be tailored for the needs of individual patients.
This multi-institution prospective cohort study seeks to utilize and optimize first Point-of-Care Oral
Cytopathology Tool (POCOCT), a microfluidics ensemble and single cell image-based data acquisition system
employing artificial intelligence with interpretation of >100 image features including nuclear F-actin for precision
oral lesion diagnostics to be completed. Portable diagnostic tools and embedded algorithms will be optimized for
secondary and tertiary care settings for the first time. In this R01 study, POCOCT-derived OSCC CR and OED
MT models will be developed to elucidate population and patient-specific dynamic changes in numerical index
that yield key information related to CR and risk of MT. While past efforts focused on a single time point, this
same multimodal chip-based approach will be used to sample repeatedly during surveillance to identify the value
of speed of change to MT and CR. The overarching goals of this R01 study are: (1) to determine whether
cytological signatures, when examined serially over time, can lead to better risk prediction for CR, (2) to
determine if the same signatures can lead to earlier detection of local recurrence than the traditional clinical
pathway, and (3) to further optimize the POCOCT for precision lesion diagnostics of MT and CR using newly
identified biomarkers, including nuclear F-actin, and rare cell phenotypes identified by deep learning.
This R01 will leverage unique NIDCR-Grand Opportunity databases for a new paradigm of precision
diagnostics. High risk patients will be longitudinally monitored in secondary and tertiary care settings at intervals,
and their risk trajectory will be established over time using personalized multivariate cytological signatures as
well as initial values. This prospective longitudinal cohort study has potential for more accurate lesion diagnosis,
improving patient survival and overall quality of life.
抽象的
在美国,每年被诊断出约50,000口腔和咽癌(OPC)
(发病率10/100,000)。此外,口腔上皮发育不良(OED)的常见约15倍。
已知诊断为OED的患者有恶性转化(MT)的风险,而接受治疗的患者
已知口服鳞状细胞癌(OSCC)的癌症复发风险升高(CR)。有
关于这些患者的最佳临床监测途径的共识很少。有历史的人
OSCC和携带OED/OSCC的潜在恶性口服病变(PMOLS)可能具有广泛的临床变化
表现与没有恶性潜力的口腔病变重叠。因此,临床医生可能不愿进行
这些患者的串行手术刀活检。市售的诊断辅助手段缺乏足够的临床
在病变疾病范围内的验证。当OSCC或高级OED早期诊断出时,就会有一个
提供适当及时治疗的机会,患者的结果可以大大改善。因此,那里
是对新的高效非侵入精度口服病变诊断技术的迫切需求,可以
根据个别患者的需求进行量身定制。
这项多机构的前瞻性队列研究旨在利用和优化口头的第一次口头
细胞病理学工具(POCOCT),微流体集合和基于单细胞图像的数据采集系统
采用人工智能,解释> 100个图像特征,包括核F-肌动蛋白,以精确
口服病变诊断要完成。便携式诊断工具和嵌入式算法将被优化
第一次中学和三级护理设置。在这项R01研究中,Pococt衍生的OSCC CR和OED
MT模型将开发以阐明数值指数的人口和特定于患者的动态变化
产生与CR和MT风险有关的关键信息。虽然过去的努力集中在一个时间点上,但
相同的多模式基于基于芯片的方法将在监视期间反复进行采样,以识别该值
变革速度到MT和Cr。这项R01研究的总体目标是:(1)确定是否是否
随着时间的流逝,在串行检查时,细胞学特征可能会导致CR的更好风险预测,(2)
确定相同的签名是否可以导致比传统临床更早发现局部复发
途径和(3)进一步优化了使用新的MT和CR的精确病变诊断的PocoCT
通过深度学习鉴定出的生物标志物,包括核F-肌动蛋白和稀有细胞表型。
此R01将利用独特的NIDCR栅格机会数据库来获得新的精确范式
诊断。高风险患者将在次级和三级护理环境中纵向监测
随着时间的流逝,他们的风险轨迹将使用个性化的多元细胞学特征作为
以及初始值。这项前瞻性纵向队列研究具有更准确的病变诊断,
改善患者的生存和整体生活质量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN T MCDEVITT其他文献
JOHN T MCDEVITT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN T MCDEVITT', 18)}}的其他基金
Oral Dysplasia and Oral Cavity Cancer Risk in Dental and Medical Surveillance Settings Using a Chairside Chip-Based Cytopathology Tool
使用基于椅旁芯片的细胞病理学工具评估牙科和医疗监测环境中的口腔发育不良和口腔癌风险
- 批准号:
10605157 - 财政年份:2022
- 资助金额:
$ 76.7万 - 项目类别:
Lab-on-a-Chip-Based System for Detection and Monitoring of Oral Cancer in Dental Settings
用于牙科环境中口腔癌检测和监测的基于芯片实验室的系统
- 批准号:
9047158 - 财政年份:2016
- 资助金额:
$ 76.7万 - 项目类别:
Lab-on-a-Chip-Based System for Detection and Monitoring of Oral Cancer in Dental Settings
用于牙科环境中口腔癌检测和监测的基于芯片实验室的系统
- 批准号:
9387924 - 财政年份:2016
- 资助金额:
$ 76.7万 - 项目类别:
Monitoring of Oral Cancer Patients Using Novel Lab-on-a-Chip Ensembles
使用新型芯片实验室整体监测口腔癌患者
- 批准号:
8299835 - 财政年份:2009
- 资助金额:
$ 76.7万 - 项目类别:
Monitoring of Oral Cancer Patients Using Novel Lab-on-a-Chip Ensembles
使用新型芯片实验室整体监测口腔癌患者
- 批准号:
7939647 - 财政年份:2009
- 资助金额:
$ 76.7万 - 项目类别:
Monitoring of Oral Cancer Patients Using Novel Lab-on-a-Chip Ensembles
使用新型芯片实验室整体监测口腔癌患者
- 批准号:
7854787 - 财政年份:2009
- 资助金额:
$ 76.7万 - 项目类别:
Monitoring of Oral Cancer Patients Using Novel Lab-on-a-Chip Ensembles
使用新型芯片实验室整体监测口腔癌患者
- 批准号:
8521443 - 财政年份:2009
- 资助金额:
$ 76.7万 - 项目类别:
Development of A Lab-on-a-Chip System for Saliva-Based Diagnostics
开发基于唾液的诊断芯片实验室系统
- 批准号:
7151281 - 财政年份:2006
- 资助金额:
$ 76.7万 - 项目类别:
Development of A Lab-on-a-Chip System for Saliva-Based Diagnostics
开发基于唾液的诊断芯片实验室系统
- 批准号:
7282487 - 财政年份:2006
- 资助金额:
$ 76.7万 - 项目类别:
Development of A Lab-on-a-Chip System for Saliva-Based Diagnostics
开发基于唾液的诊断芯片实验室系统
- 批准号:
7919019 - 财政年份:2006
- 资助金额:
$ 76.7万 - 项目类别:
相似国自然基金
卫星互联网端到端安全传输模型与安全路由协议研究
- 批准号:62302389
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
中继通信协议下2-D网络化系统的递推状态估计研究
- 批准号:62373103
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
新型实用化量子密码协议的高安全等级理论分析
- 批准号:12374473
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
云边端架构下联邦学习下行通信压缩算法与协议研究
- 批准号:62372487
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
面向实际应用的测量设备无关类量子密钥分发协议研究
- 批准号:62371244
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
相似海外基金
A Mobile Health Application to Detect Absence Seizures using Hyperventilation and Eye-Movement Recordings
一款使用过度换气和眼动记录检测失神癫痫发作的移动健康应用程序
- 批准号:
10696649 - 财政年份:2023
- 资助金额:
$ 76.7万 - 项目类别:
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
- 批准号:
10735564 - 财政年份:2023
- 资助金额:
$ 76.7万 - 项目类别:
Autonomous Navigating Robot for Detecting Falls and Risk of Falls in Nursing Home Residents with Alzheimer's Disease /ADRD
用于检测患有阿尔茨海默病/ADRD 的疗养院居民跌倒和跌倒风险的自主导航机器人
- 批准号:
10698704 - 财政年份:2023
- 资助金额:
$ 76.7万 - 项目类别:
Administrative Supplement - Rapid Actionable Data for Opioid Response in Kentucky (RADOR-KY)
行政补充 - 肯塔基州阿片类药物反应的快速可操作数据 (RADOR-KY)
- 批准号:
10850016 - 财政年份:2022
- 资助金额:
$ 76.7万 - 项目类别:
Adversarially Based Virtual CT Workflow for Evaluation of AI in Medical Imaging
基于对抗性的虚拟 CT 工作流程,用于评估医学影像中的人工智能
- 批准号:
10592427 - 财政年份:2022
- 资助金额:
$ 76.7万 - 项目类别: