Uncovering the etiologies of non-immune hydrops fetalis through comprehensive genomic analyses and phenotyping

通过全面的基因组分析和表型分析揭示非免疫性胎儿水肿的病因

基本信息

项目摘要

PROJECT SUMMARY Non-immune hydrops fetalis (NIHF) is diagnosed on prenatal ultrasound when abnormal fluid collections are seen in the fetus. NIHF carries significant risks of stillbirth, preterm birth, and postnatal morbidity and mortality, particularly when the etiology remains unknown and critical opportunities for focused care and implementation of treatments are missed. In contrast, when an etiology is found, both pre- and postnatal management are directly impacted: counseling is focused, risks to the fetus and neonate are accurately anticipated, in utero surveillance and available treatments such as intrauterine transfusions are implemented, and postnatal treatments are promptly initiated to optimize outcomes. Our overarching hypothesis is that discovering the precise etiologies of NIHF will create critical opportunities to improve outcomes through earlier, targeted pre- and postnatal care. In our preliminary study of 127 NIHF cases unexplained by standard microarray or karyotype, we identified pathogenic or likely pathogenic variants implicating a genetic disease in 29% with exome sequencing (ES), as well as a variant of potential clinical significance in another 9%. Importantly, the diseases we identified are also greatly variable in their ultimate severity as well as in their pre- and postnatal clinical management. However, several important steps remain in order to uncover the genetic etiologies for cases remaining unsolved and improve our care for these pregnancies. As such, we propose a multicenter collaboration to discover additional genetic diseases and novel variants underlying NIHF in a prospectively enrolled, large and diverse cohort utilizing whole genome sequencing (WGS) and RNA sequencing. We will further perform comprehensive phenotyping to: a) collect detailed postnatal phenotypes and outcomes, b) re-analyze WGS data utilizing postnatal phenotype to identify diagnoses missed when sequencing algorithms incorporated only in utero phenotype, and c) expand the in utero phenotypes of all genetic diseases we identify to optimize prenatal diagnosis and yield of genomic testing during pregnancy. Our multidisciplinary team is ideally positioned to excel, and includes experienced individuals in Perinatology, Clinical and Molecular Genetics, Statistical Genetics, Genetic Epidemiology, Bioinformatics, Computational Biology, and Biostatistics. Such a focused and comprehensive approach to the evaluation and diagnosis of NIHF has not previously been performed, particularly in a large and diverse cohort, and we expect that this work will significantly improve our ability to understand and reshape the perinatal care for NIHF. Our work will lay the foundation for redefining the approach to prenatal diagnosis, in utero management, and postnatal care for NIHF, and will create future opportunities to develop novel diagnostic algorithms and in utero approaches to manage the complications of specific diseases underlying NIHF. Only through this precision approach can we improve the course for fetuses and families affected by NIHF.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Teresa N Sparks其他文献

Teresa N Sparks的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Teresa N Sparks', 18)}}的其他基金

Uncovering the etiologies of non-immune hydrops fetalis through comprehensive genomic analyses and phenotyping
通过全面的基因组分析和表型分析揭示非免疫性胎儿水肿的病因
  • 批准号:
    10570889
  • 财政年份:
    2022
  • 资助金额:
    $ 77.29万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 77.29万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 77.29万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 77.29万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 77.29万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 77.29万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 77.29万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 77.29万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 77.29万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 77.29万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 77.29万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了