Uncovering the etiologies of non-immune hydrops fetalis through comprehensive genomic analyses and phenotyping
通过全面的基因组分析和表型分析揭示非免疫性胎儿水肿的病因
基本信息
- 批准号:10570889
- 负责人:
- 金额:$ 69.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:AffectAlgorithmsAnemiaAscitesAutopsyBioinformaticsBiometryCandidate Disease GeneCaringClinical ManagementCollaborationsCollectionComputational BiologyCounselingCountryDataDiagnosisDiagnosticDiseaseEarly DiagnosisEdemaEnrollmentEtiologyEvaluationFamilyFetusFoundationsFutureGenesGeneticGenetic DiseasesGenetic Predisposition to DiseaseGenomicsHydrops FetalisIndividualInheritedIntrauterine Blood TransfusionKaryotypeKnowledgeLiquid substanceMedical GeneticsMedical centerMendelian disorderMentored Clinical Scientist Development ProgramMolecular GeneticsMorbidity - disease rateMulticenter StudiesOutcomePathogenicityPericardial effusionPerinatalPerinatal CarePerinatologyPhenotypePleural effusion disorderPositioning AttributePostnatal CarePregnancyPregnant WomenPremature BirthPrenatal DiagnosisRaceReportingRiskSample SizeSeveritiesShapesSkinTestingVariantWorkaccurate diagnosisclinically significantcohortdiagnostic accuracydiagnostic algorithmdisease diagnosisdisparity reductionexome sequencingexperiencefetalgenetic epidemiologygenetic testinggenetic variantgenome sequencingimprovedimproved outcomein uteromortalitymultidisciplinaryneonatal deathneonatenovelnovel diagnosticspersonalized approachphenotypic datapostnatalprenatalprenatal testingprospectiveracial diversitystillbirthtooltranscriptome sequencingultrasoundwhole genome
项目摘要
PROJECT SUMMARY
Non-immune hydrops fetalis (NIHF) is diagnosed on prenatal ultrasound when abnormal fluid collections
are seen in the fetus. NIHF carries significant risks of stillbirth, preterm birth, and postnatal morbidity and
mortality, particularly when the etiology remains unknown and critical opportunities for focused care and
implementation of treatments are missed. In contrast, when an etiology is found, both pre- and postnatal
management are directly impacted: counseling is focused, risks to the fetus and neonate are accurately
anticipated, in utero surveillance and available treatments such as intrauterine transfusions are implemented,
and postnatal treatments are promptly initiated to optimize outcomes. Our overarching hypothesis is that
discovering the precise etiologies of NIHF will create critical opportunities to improve outcomes through earlier,
targeted pre- and postnatal care. In our preliminary study of 127 NIHF cases unexplained by standard
microarray or karyotype, we identified pathogenic or likely pathogenic variants implicating a genetic disease in
29% with exome sequencing (ES), as well as a variant of potential clinical significance in another 9%.
Importantly, the diseases we identified are also greatly variable in their ultimate severity as well as in their pre-
and postnatal clinical management. However, several important steps remain in order to uncover the genetic
etiologies for cases remaining unsolved and improve our care for these pregnancies.
As such, we propose a multicenter collaboration to discover additional genetic diseases and novel
variants underlying NIHF in a prospectively enrolled, large and diverse cohort utilizing whole genome
sequencing (WGS) and RNA sequencing. We will further perform comprehensive phenotyping to: a) collect
detailed postnatal phenotypes and outcomes, b) re-analyze WGS data utilizing postnatal phenotype to identify
diagnoses missed when sequencing algorithms incorporated only in utero phenotype, and c) expand the in
utero phenotypes of all genetic diseases we identify to optimize prenatal diagnosis and yield of genomic testing
during pregnancy. Our multidisciplinary team is ideally positioned to excel, and includes experienced
individuals in Perinatology, Clinical and Molecular Genetics, Statistical Genetics, Genetic Epidemiology,
Bioinformatics, Computational Biology, and Biostatistics. Such a focused and comprehensive approach to the
evaluation and diagnosis of NIHF has not previously been performed, particularly in a large and diverse cohort,
and we expect that this work will significantly improve our ability to understand and reshape the perinatal care
for NIHF. Our work will lay the foundation for redefining the approach to prenatal diagnosis, in utero
management, and postnatal care for NIHF, and will create future opportunities to develop novel diagnostic
algorithms and in utero approaches to manage the complications of specific diseases underlying NIHF. Only
through this precision approach can we improve the course for fetuses and families affected by NIHF.
项目摘要
非免疫性胎儿水肿(NIHF)是产前超声诊断时,异常液体收集
在胎儿中可见。NIHF具有死胎、早产和产后发病的显著风险,
死亡率,特别是当病因仍然未知时,以及重点护理的关键机会,
治疗的实施被遗漏。相反,当发现病因时,产前和产后
管理直接受到影响:咨询是集中的,胎儿和新生儿的风险是准确的,
预计,子宫内监测和可用的治疗,如子宫内输血的实施,
及时启动产后治疗以优化结果。我们的首要假设是
发现NIHF的确切病因将创造关键的机会,
有针对性的产前和产后护理。在我们对127例标准无法解释的NIHF病例的初步研究中
微阵列或核型分析,我们确定了致病或可能致病的变异,涉及遗传疾病,
29%与外显子组测序(ES),以及在另外9%的潜在临床意义的变体。
重要的是,我们确定的疾病在其最终严重程度以及其前期严重程度方面也存在很大差异。
和产后临床管理。然而,为了揭示基因,还有几个重要步骤
尚未解决的病例的病因并改善我们对这些怀孕的护理。
因此,我们提出了一个多中心的合作,以发现其他遗传疾病和新的
使用全基因组前瞻性招募的大型多样化队列中NIHF的潜在变异
测序(WGS)和RNA测序。我们将进一步进行全面的表型分析,以:a)收集
详细的出生后表型和结果,B)利用出生后表型重新分析WGS数据,
当测序算法仅结合子宫内表型时错过诊断,以及c)扩大子宫内表型,
我们确定的所有遗传疾病的子宫表型,以优化产前诊断和基因组检测的产量
孕期我们的多学科团队是理想的定位,以出类拔萃,并包括经验丰富的
围产期学,临床和分子遗传学,统计遗传学,遗传流行病学,
生物信息学、计算生物学和生物统计学。这种重点突出和全面的方法,
NIHF的评估和诊断以前没有进行过,特别是在大的和多样化的队列中,
我们希望这项工作将大大提高我们理解和重塑围产期护理的能力,
对于NIHF。我们的工作将为重新定义产前诊断的方法奠定基础,
管理和产后护理,并将创造未来的机会,开发新的诊断
算法和子宫内方法来管理NIHF基础的特定疾病的并发症。只
通过这种精确的方法,我们可以改善受NIHF影响的胎儿和家庭的进程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Teresa N Sparks其他文献
Teresa N Sparks的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Teresa N Sparks', 18)}}的其他基金
Uncovering the etiologies of non-immune hydrops fetalis through comprehensive genomic analyses and phenotyping
通过全面的基因组分析和表型分析揭示非免疫性胎儿水肿的病因
- 批准号:
10345918 - 财政年份:2022
- 资助金额:
$ 69.88万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 69.88万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 69.88万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 69.88万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 69.88万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 69.88万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 69.88万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 69.88万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 69.88万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 69.88万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 69.88万 - 项目类别:
Research Grant














{{item.name}}会员




