Project 2: Measuring and modeling the tumor and immune microenvironment before and during therapy and at the time of drug resistance
项目2:治疗前、治疗期间以及耐药时的肿瘤和免疫微环境的测量和建模
基本信息
- 批准号:10343840
- 负责人:
- 金额:$ 30.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-03-08 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:Adrenal Cortex HormonesAdverse effectsAdverse eventAdverse reactionsAntibodiesAntigensBRAF geneBiologicalBiological AssayBiological MarkersBiopsyBrain NeoplasmsBullous PemphigoidCTLA4 geneCell CycleCellsClinicalClinical TrialsComplementComputing MethodologiesDNA DamageDNA damage checkpointDataDisease ProgressionDisease ResistanceDrug resistanceEcosystemExcisionExtracellular MatrixFormalinGenerationsGenomic InstabilityGoalsHomeostasisHumanImageImmuneImmune System DiseasesImmune ToleranceImmune checkpoint inhibitorImmunofluorescence ImmunologicImmunohistochemistryImmunologic SurveillanceInfiltrationInstitutional Review BoardsInterventionIntervention StudiesLearningLichen PlanusLigandsLightLinkMEKsMeasuresMessenger RNAMethodsModelingMolecularMusNon-MalignantParaffin EmbeddingPatientsPeriodicityPharmaceutical PreparationsPharmacologyPhenotypePhosphotransferasesPhysiologyPrediction of Response to TherapyPropertyProteinsPsoriasisReactionReagentResectedResistanceResolutionRetinoidsSamplingSeveritiesSignal TransductionSkinSpecimenSteroidsStromal CellsStromal NeoplasmSupervisionSystemT-LymphocyteTNF geneTestingTherapeuticTherapeutic InterventionTimeTime Series AnalysisTissue EmbeddingTissuesToxic effectTreatment EffectivenessTriplet Multiple BirthTumor MarkersTumor-Infiltrating LymphocytesTumor-infiltrating immune cellsVitiligoWorkalgorithm developmentarmbasebevacizumabcancer cellcell stromacell typecohorteffectiveness evaluationfluorescence imaginghigh dimensionalityhuman imagingimaging modalityimmune checkpointinhibitorinsightmachine learning methodmalignant statemelanomamouse modelmultidimensional datamutational statusneoplastic cellnovelopen sourcephenotypic datapredicting responseprogrammed cell death ligand 1programmed cell death protein 1responseresponse biomarkersingle cell sequencingsingle-cell RNA sequencingsmall moleculesoftware developmenttargeted agenttargeted treatmenttranscriptomicstreatment responsetriple-negative invasive breast carcinomatumortumor microenvironmenttumor-immune system interactionsunsupervised learning
项目摘要
PROJECT SUMMARY – PROJECT 2 (AIM 5) Measuring and modeling the tumor and immune
microenvironment before and after therapy. The overall goal of Project 2 is to determine which features of a
tumor and its microenvironment make it responsive to ICIs or targeted therapies alone or in combination. We
will collect quantitative data at single cell resolution on the identities, states and physical arrangement of tumor,
stromal and immune cells and on soluble and ECM components that comprise the tumor microenvironment
(TME). This will be accomplished using highly multiplexed fluorescence imaging of standard formalin fixed,
paraffin-embedded (FFPE) tissue and tumor samples combined with single cell RNA sequencing (scRNA). To
provide insight into causal relationships among variables, we will analyze samples collected at different points
in time, most commonly biopsies prior to and on therapy, and at the time of drug-resistant disease. In the case
of ICI-induced skin toxicities, we will perform localized interventional studies (e.g. treatment with retinoids)
followed by biopsies to determine the effectiveness of treatment and to test specific hypotheses about immune
cell homeostasis in skin, respectively. Much of the work in this project will be hypothesis generating and will be
tightly integrated with hypothesis testing studies in cells and mice in Projects 1 and 3.
Aim 5.1 will focus on experimental and computational methods for obtaining 20-60 channel images from
formalin-fixed, paraffin embedded (FFPE) tissue and tumor samples using tissue-based cyclic
immunofluorescence (t-CycIF). Aim 5.2 will integrate high dimensional t-CycIF imaging and single cell RNA
sequencing to generate data on the composition and states of tumor, stromal and immune cells at single-cell
resolution (“deep tumor phenotypes”). Aim 5.3 will use deep phenotyping to analyze tumors from BRAFV600E
patients treated with BRAF and MEK inhibitors or patients treated with ICIs irrespective of the BRAF mutation
status. Biopsies collected before and during therapy, and at the time of progression, will be used to identify
changes in the malignant cells, TME and immune cell cohort associated with, and potentially predictive of,
therapeutic response and drug resistance. Aim 5.4 will analyze the effects of ICIs on skin-resident T-cells and
compare adverse responses to the idiopathic conditions they resemble; analysis of local responses to retinoids
and steroids will provide new insight into immune homeostasis in the skin. Aim 5.5 will identify features
associated with (and ultimately predictive of) exceptional response to ICIs in brain tumors and provide data on
biomarkers that can be evaluated in Bayesian adaptive clinical trials. Aim 5.6 will investigate the connection
between immune infiltration and intrinsic or drug-induced genomic instability in triple negative breast cancers
(TNBC). Aim 5.7 will integrate data on tumor phenotypes, drug interventions and clinical responses using a
range of supervised and unsupervised machine-learning methods, including methods based on network priors,
and also link scRNA transcriptomics with t-CycIF image data using a multi-view learning framework.
项目摘要 - 项目2(目标5)测量和建模肿瘤和免疫
治疗前后的微环境。项目2的总体目标是确定哪些功能
肿瘤及其微环境使其对ICI或靶向疗法的反应或合并。我们
将以单细胞分辨率收集有关肿瘤的身份,状态和物理排列的定量数据,
基质和免疫电池以及构成肿瘤微环境的固体和ECM成分
(TME)。这将使用标准福尔马林固定的高度多路复用荧光成像来完成
石蜡包裹的(FFPE)组织和肿瘤样品与单细胞RNA测序(SCRNA)结合使用。到
提供有关变量之间因果关系的见解,我们将分析在不同点收集的样本
在这种情况下,最常见的是在治疗前和治疗时以及耐药性疾病时进行活检。
在ICI诱导的皮肤毒性中,我们将进行局部介入研究(例如,用视视视网麻样式治疗)
然后进行活检以确定治疗的有效性并检验有关免疫的特定假设
细胞稳态分别在皮肤中。该项目中的许多工作将是假设的,并且将是
在项目1和3中,与细胞和小鼠中的假设检验研究紧密整合。
AIM 5.1将重点介绍用于从
福尔马林固定的石蜡嵌入(FFPE)组织和肿瘤样品使用基于组织的循环
免疫荧光(T-Cycif)。 AIM 5.2将整合高维T-Cycif成像和单细胞RNA
测序以产生有关单细胞肿瘤,基质和免疫细胞的组成和状态的数据
分辨率(“深肿瘤表型”)。 AIM 5.3将使用深层表型分析BRAFV600E的肿瘤
接受BRAF和MEK抑制剂或ICIS治疗的患者,无论BRAF突变如何
地位。在治疗前后收集的活检以及进展时,将用于识别
与恶性细胞,TME和免疫球体队列的变化有关,并有可能预测,
治疗反应和耐药性。 AIM 5.4将分析ICI对皮肤居民T细胞的影响和
将广告回答与它们相似的特发性条件进行比较;分析局部对视网膜类似的反应
类固醇将为皮肤中的免疫稳态提供新的见解。 AIM 5.5将识别功能
与(并最终预测)对ICI在脑肿瘤中的特殊反应有关,并提供有关
可以在贝叶斯自适应临床试验中评估的生物标志物。 AIM 5.6将调查连接
免疫浸润与三重阴性乳腺癌中固有或药物诱导的基因组不稳定性之间
(TNBC)。 AIM 5.7将使用A整合有关肿瘤表型,药物干预和临床反应的数据
受监督和无监督的机器学习方法,包括基于网络先验的方法,
并使用多视图学习框架将SCRNA转录组学与T-Cycif图像数据联系起来。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arlene H. Sharpe其他文献
The complexity of the B7-CD28/CTLA-4 costimulatory pathway.
B7-CD28/CTLA-4 共刺激途径的复杂性。
- DOI:
- 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
Schweitzer An;Arlene H. Sharpe - 通讯作者:
Arlene H. Sharpe
B7 Expression on T Cells Down-Regulates Immune Responses through CTLA-4 Ligation via R-T Interactions.
T 细胞上的 B7 表达通过 R-T 相互作用的 CTLA-4 连接下调免疫反应。
- DOI:
10.4049/jimmunol.172.8.5128-b - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Patricia A. Taylor;Christopher J. Lees;Sylvie Fournier;James P. Allison;Arlene H. Sharpe;B. Blazer - 通讯作者:
B. Blazer
Erratum for vol. 101, p. 1453
- DOI:
10.1182/blood-2003-02-0610 - 发表时间:
2003-05-01 - 期刊:
- 影响因子:
- 作者:
Bruce R. Blazar;Arlene H. Sharpe;Andy I. Chen;Angela Panoskaltsis-Mortari;Christopher Lees;Hisaya Akiba;Hideo Yagita;Nigel Killeen;Patricia A. Taylor - 通讯作者:
Patricia A. Taylor
Arlene H. Sharpe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arlene H. Sharpe', 18)}}的其他基金
Defining regulators of immunity to acute infection using CRISPR screens
使用 CRISPR 筛选定义急性感染免疫调节因子
- 批准号:
10210502 - 财政年份:2020
- 资助金额:
$ 30.14万 - 项目类别:
Abbreviated targeted therapy to improve anti-PD-1 inhibitor efficacy in melanoma
简化靶向治疗可提高抗 PD-1 抑制剂对黑色素瘤的疗效
- 批准号:
10153453 - 财政年份:2018
- 资助金额:
$ 30.14万 - 项目类别:
Abbreviated targeted therapy to improve anti-PD-1 inhibitor efficacy in melanoma
简化靶向治疗可提高抗 PD-1 抑制剂对黑色素瘤的疗效
- 批准号:
9906872 - 财政年份:2018
- 资助金额:
$ 30.14万 - 项目类别:
Abbreviated targeted therapy to improve anti-PD-1 inhibitor efficacy in melanoma
简化靶向治疗可提高抗 PD-1 抑制剂对黑色素瘤的疗效
- 批准号:
9576657 - 财政年份:2018
- 资助金额:
$ 30.14万 - 项目类别:
Defining regulators of immunity to acute infection using CRISPR screens
使用 CRISPR 筛选定义急性感染免疫调节因子
- 批准号:
10207344 - 财政年份:2017
- 资助金额:
$ 30.14万 - 项目类别:
Project 1: CRISPR screens to discover regulators of CD8 and CD4 cell fates and function
项目 1:通过 CRISPR 筛选发现 CD8 和 CD4 细胞命运和功能的调节因子
- 批准号:
10207349 - 财政年份:2017
- 资助金额:
$ 30.14万 - 项目类别:
Defining regulators of immunity to acute infection using CRISPR screens
使用 CRISPR 筛选定义急性感染免疫调节因子
- 批准号:
9380804 - 财政年份:2017
- 资助金额:
$ 30.14万 - 项目类别:
Defining regulators of immunity to acute infection using CRISPR screens
使用 CRISPR 筛选定义急性感染免疫调节因子
- 批准号:
10266219 - 财政年份:2017
- 资助金额:
$ 30.14万 - 项目类别:
相似国自然基金
基因与家庭不利环境影响儿童反社会行为的表观遗传机制:一项追踪研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
不利地质结构对地下洞室群围岩地震响应影响研究
- 批准号:51009131
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
列车制动力对铁路桥梁的作用机理及最不利影响的研究
- 批准号:50178004
- 批准年份:2001
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Role of IL-6 trans signaling in atherosclerosis development and late-stage pathogenesis
IL-6反式信号传导在动脉粥样硬化发展和晚期发病机制中的作用
- 批准号:
10652788 - 财政年份:2023
- 资助金额:
$ 30.14万 - 项目类别:
Safety and efficacy of Belatacept in heart transplantation
贝拉西普在心脏移植中的安全性和有效性
- 批准号:
10622240 - 财政年份:2023
- 资助金额:
$ 30.14万 - 项目类别:
Development of a Novel, Targeted Small Molecule Inhibitor of the Nucleoside Salvage Pathway to Treat Acute Disseminated Encephalomyelitis (ADEM)
开发一种新型核苷挽救途径靶向小分子抑制剂来治疗急性播散性脑脊髓炎 (ADEM)
- 批准号:
10755864 - 财政年份:2023
- 资助金额:
$ 30.14万 - 项目类别:
Novel approaches for the treatment of autoimmune disease
治疗自身免疫性疾病的新方法
- 批准号:
10601899 - 财政年份:2023
- 资助金额:
$ 30.14万 - 项目类别: