Investigating the Cellular Impact of 8-oxo-Guanine on DNA Replication and Genome Stability
研究 8-氧代鸟嘌呤对 DNA 复制和基因组稳定性的细胞影响
基本信息
- 批准号:10348923
- 负责人:
- 金额:$ 10.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-06 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAgingAspergillus Nuclease S1Base Excision RepairsBindingBiochemicalBiochemistryBiologicalBypassCell AgingCell DeathCell LineCell SurvivalCellsChIP-seqChimeric ProteinsChromatinChromosome Fragile SitesComb animal structureComplementDNADNA AdductsDNA DamageDNA Replication FactorDNA SequenceDNA analysisDNA biosynthesisDNA photoproductsDNA replication forkDNA-Directed DNA PolymeraseDiseaseDyesFANCD2 proteinFiberGamma-H2AXGenomeGenome StabilityGenomic DNAGenomic InstabilityGenomicsGuanineHalf-LifeHistone H2BHistonesHumanHuman GenomeHydrogen PeroxideIn VitroInflammationKnock-outKnowledgeLesionLightLinkLipidsMalignant NeoplasmsMediatingMetabolismMethodsMitosisMitoticMutagenesisMutateMutationNitrogenNuclearOGG1 geneOutcomeOxidantsOxidative StressOxygenPathway interactionsPeptidesPhotosensitizing AgentsPhysiologicalPollutionPolymeraseProductionProteinsPublishingPyrimidine DimersRegulationReporterRoleSinglet OxygenSiteSkin CarcinogenesisSmokingSolar EnergySourceSpecificityStressSyndromeSystemTERF1 geneTelomere-Binding ProteinsTelomeric Repeat Binding Protein 1TransfectionUVA inducedUltraviolet Raysadductbasebiological adaptation to stresscancer cellcancer predispositioncell transformationchromophoreexperienceexperimental studygenome sequencinggenome-widehuman DNA damageirradiationmutantnoveloxidative DNA damagepleiotropismpreventrepairedreplication stressresponsesenescencesolar ultraviolet radiationtelomeretoolwhole genome
项目摘要
Project Summary/Abstract
Excess reactive oxygen/nitrogen species, or oxidative stress, is a ubiquitous condition humans experience that
can damage the entire cell. Importantly, oxidative stress damages DNA resulting in numerous lesions that can
halt DNA replication and increase mutagenesis. Oxidative stress emanates from various endogenous sources
(metabolism, inflammation, etc.) but also exogenous environmental sources such as pollution, smoking, and
solar ultraviolet radiation (UVR), arguably the most universal source of oxidative stress and DNA damage
humans encounter. 8-oxo-deoxyguaine (8oxoG) is one of the principle adducts generated by oxidative stress,
and while well studied in vitro, is historically difficult to investigate in cells since the agents used to produce it
(UVA, hydrogen peroxide, etc.) also generate other DNA adducts, strand-breaks, and damage lipids and proteins
throughout the cell. Our group has developed and published on a novel fluorogen activated peptide (FAP) which
can bind malachite green photosensitizer dyes and when excited with far-red light, specifically produces singlet
oxygen. Singlet oxygen is known to have a short half-life and reacts rapidly with guanine to form 8oxoG. By
fusing FAP to the telomere binding protein TRF1, we were able to demonstrate the specificity of our
chemoptogenetic system, and its spatial and temporal control. We have also generated cell lines which express
FAP fused to the histone H2B (H2B-FAP), allowing for genome-wide production of 8oxoG. The overall hypothesis
of this proposal is that 8oxoG stalls DNA replication forks, especially at repetitive DNA sequences like telomeres,
requiring the activities of ATR, Pol η, and PrimPol. This proposal is uniquely poised to address this hypothesis,
as the H2B-FAP and TRF1-FAP tools are the only methods available to specifically induce 8oxoG within the
human genome. In addition to telomeres, use of the H2B-FAP tool will allow for the identification of other
sequences sensitive to 8oxoG formation by examining the binding of replication stress response factors by ChIP-
seq. Using physiological conditions, these identified sequences as well as telomere repeats will be studied in
vitro to determine if they stall replicative DNA polymerases. This combination of biochemical and cellular
replication studies will fill a critical gap in our knowledge of how 8oxoG impacts replication fork integrity
and cell fate. Oxidative stress is linked to various diseases including cancer, but also aging. However, due to
its pleiotropic effects, it is difficult to attribute any specific outcome to a particular lesion. While this study will
advance our general understanding of 8oxoG, it will directly compare H2B-FAP activation with UVA (a specific
subset of UVR), which induces pyrimidine dimers in addition to oxidative stress. UVR promotes skin
carcinogenesis especially in the absence of factors such as Pol η, the protein mutated in the cancer
predisposition syndrome, XPV. This study will also examine the direct role of Pol η and other DNA replication
factors (ATR, PrimPol, FANCD2, and MacroH2A1.2) in the cellular response to 8oxoG.
项目概要/摘要
过量的活性氧/氮或氧化应激是人类普遍存在的情况
会损害整个细胞。重要的是,氧化应激会损害 DNA,导致许多损伤,
停止 DNA 复制并增加诱变。氧化应激来自各种内源性来源
(新陈代谢、炎症等)以及外源性环境来源,例如污染、吸烟和
太阳紫外线辐射 (UVR),可以说是最普遍的氧化应激和 DNA 损伤来源
人类相遇。 8-氧代-脱氧鸟嘌呤 (8oxoG) 是氧化应激产生的主要加合物之一,
虽然在体外进行了充分研究,但历史上很难在细胞中进行研究,因为用于生产它的试剂
(UVA、过氧化氢等)还会产生其他 DNA 加合物、链断裂,并损害脂质和蛋白质
整个细胞。我们的团队开发并发表了一种新型荧光激活肽(FAP),
可以结合孔雀石绿光敏剂染料,当用远红光激发时,特异性地产生单线态
氧。已知单线态氧的半衰期很短,并且会与鸟嘌呤快速反应形成 8oxoG。经过
将 FAP 与端粒结合蛋白 TRF1 融合,我们能够证明我们的特异性
化学光遗传学系统及其空间和时间控制。我们还生成了表达的细胞系
FAP 与组蛋白 H2B (H2B-FAP) 融合,允许在全基因组范围内生产 8oxoG。总体假设
该提议的主要内容是,8oxoG 会阻止 DNA 复制叉,尤其是在端粒等重复 DNA 序列处,
需要 ATR、Pol η 和 PrimPol 的活性。该提案旨在解决这一假设,
因为 H2B-FAP 和 TRF1-FAP 工具是唯一可在细胞内特异性诱导 8oxoG 的方法。
人类基因组。除了端粒之外,使用 H2B-FAP 工具还可以识别其他端粒
通过 ChIP-检查复制应激反应因子的结合来确定对 8oxoG 形成敏感的序列
序列。使用生理条件,将研究这些已识别的序列以及端粒重复序列
体外以确定它们是否阻碍复制 DNA 聚合酶。这种生物化学和细胞的结合
复制研究将填补我们关于 8oxoG 如何影响复制叉完整性的知识空白
和细胞命运。氧化应激与多种疾病有关,包括癌症,但也与衰老有关。然而,由于
由于其多效性效应,很难将任何特定结果归因于特定病变。虽然这项研究将
推进我们对 8oxoG 的一般理解,它将直接比较 H2B-FAP 激活与 UVA(一种特定的
UVR 的子集),除了氧化应激外,它还会诱导嘧啶二聚体。 UVR促进皮肤
致癌作用,尤其是在缺乏 Pol η(癌症中突变的蛋白质)等因素的情况下
易感综合征,XPV。这项研究还将检验 Pol η 和其他 DNA 复制的直接作用
细胞对 8oxoG 反应的因素(ATR、PrimPol、FANCD2 和 MacroH2A1.2)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ryan P Barnes其他文献
Ryan P Barnes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ryan P Barnes', 18)}}的其他基金
Investigating the Cellular Impact of 8-oxo-Guanine on DNA Replication and Genome Stability
研究 8-氧代鸟嘌呤对 DNA 复制和基因组稳定性的细胞影响
- 批准号:
10534764 - 财政年份:2021
- 资助金额:
$ 10.72万 - 项目类别:
Investigating the Impact of Telomere Specific Oxidative Base Damage in Cellular Aging
研究端粒特异性氧化碱损伤对细胞衰老的影响
- 批准号:
10292913 - 财政年份:2020
- 资助金额:
$ 10.72万 - 项目类别:
相似海外基金
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 10.72万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 10.72万 - 项目类别:
Operating Grants
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
- 批准号:
10089306 - 财政年份:2024
- 资助金额:
$ 10.72万 - 项目类别:
Collaborative R&D
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
- 批准号:
498310 - 财政年份:2024
- 资助金额:
$ 10.72万 - 项目类别:
Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
- 批准号:
23K20339 - 财政年份:2024
- 资助金额:
$ 10.72万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
- 批准号:
2740736 - 财政年份:2024
- 资助金额:
$ 10.72万 - 项目类别:
Studentship
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 10.72万 - 项目类别:
Standard Grant
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
- 批准号:
2305890 - 财政年份:2024
- 资助金额:
$ 10.72万 - 项目类别:
Fellowship Award
虚弱高齢者のSuccessful Agingを支える地域課題分析指標と手法の確立
建立区域问题分析指标和方法,支持体弱老年人成功老龄化
- 批准号:
23K20355 - 财政年份:2024
- 资助金额:
$ 10.72万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
「ケア期間」に着目したbiological aging指標の開発
开发聚焦“护理期”的生物衰老指数
- 批准号:
23K24782 - 财政年份:2024
- 资助金额:
$ 10.72万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




