Regulation of Skeletal Muscle Metabolism by Insulin Signaling
胰岛素信号对骨骼肌代谢的调节
基本信息
- 批准号:10349576
- 负责人:
- 金额:$ 39.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-23 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAgingAnabolismAutomobile DrivingBiochemicalCarbohydratesCardiovascular DiseasesCardiovascular systemClinicalDataDefectDevelopmentDiabetes MellitusDiseaseDisuse AtrophyEffectivenessEventExhibitsFOXO1A geneFunctional disorderGeneticGlucoseGlucose IntoleranceGoalsGrowthHomeostasisHormonesHumanHyperglycemiaIndividualInsulinInsulin ResistanceInsulin Signaling PathwayInvestigationIsotope LabelingKnowledgeMeasuresMediatingMedicalMetabolicMetabolic ControlMetabolic DiseasesMitochondriaModelingMolecularMolecular TargetMusMuscleMuscle MitochondriaMuscle ProteinsMuscle functionMuscular AtrophyNon-Insulin-Dependent Diabetes MellitusOrganPathway interactionsPerformancePharmacologyPhosphotransferasesPilot ProjectsPlayProtein BiosynthesisProtein-Serine-Threonine KinasesProto-Oncogene Proteins c-aktRegulationResearchRoleSignal PathwaySignal TransductionSkeletal MuscleTechniquesTestingTherapeutic InterventionTimeTreatment Efficacyadenylate kinaseblood glucose regulationcarbohydrate metabolismdiabeticexperimental studygenetic manipulationglucose disposalglucose metabolismglucose uptakeimprovedin vivoinsulin mediatorsinsulin sensitivityinsulin signalinginterestmetabolomicsmitochondrial dysfunctionmolecular modelingmuscle formnew therapeutic targetnovel therapeuticsphosphoproteomicspreservationprotein degradationprotein metabolismrestorationskeletal muscle growthskeletal muscle metabolismskeletal muscle wastingstemuptakewasting
项目摘要
Project Summary
The number of individuals with type 2 diabetes mellitus (T2DM) remains at an all-time high and is predicted to
increase over the next decade. Therefore, it is of significant medical interest to define the underlying mechanisms
driving T2DM to improve therapeutic efficacy. Insulin resistance, a condition known as reduced effectiveness to
the hormone insulin, is associated with altered glucose homeostasis and muscle dysfunction. Despite decades
of investigation, critical knowledge gaps remain in the molecular mechanisms that are responsible for the
initiation and propagation of insulin resistance. The skeletal muscle plays a significant role in glucose
homeostasis and accounts for a majority of glucose disposal following a meal. Defects in the insulin signaling
pathway in the skeletal muscle have been hypothesized to be the primary cause of insulin resistance leading to
hyperglycemia, altered protein metabolism and cardiovascular disease. Accumulating evidence has implicated
the serine/threonine kinase Akt (protein kinase B) as a critical regulator of insulin action. To directly test the
hypothesis that reduced insulin signaling via AKT causes insulin resistance and alters muscle function, we
generated mice that lack AKT signaling specifically in skeletal muscle and surprisingly found that insulin can
stimulate skeletal muscle glucose uptake and utilization in the absence of AKT. These data are inconsistent with
the canonical molecular model of insulin resistance and suggest AKT is not an obligate intermediate in the control
of skeletal muscle glucose metabolism by insulin in all conditions. The identification of this AKT-independent
pathway and its role carbohydrate homeostasis will be the focus of Aim 1 of this proposal. Although mice lacking
AKT in skeletal muscle have normal glucose uptake and insulin sensitivity, we found that they nevertheless
exhibit significant muscle atrophy and mitochondrial dysfunction with a corresponding defect in muscle
performance, confirming that AKT is required for muscle growth and function in vivo. The downstream
mechanisms responsible for AKT’s control of muscle growth and function will be defined in Aim 2. Collectively,
this proposal will build upon these important observations and elucidate the Akt-dependent and independent
pathways that control the metabolic actions of insulin in vivo. These experiments have the potential to profoundly
affect our mechanistic understanding of the pathways underlying insulin resistance and will lead to the
identification of new therapeutic targets for T2DM, cardiovascular and skeletomuscular diseases.
项目摘要
患有2型糖尿病(T2 DM)的个体数量仍然处于历史最高水平,预计
在未来十年内增加。因此,确定潜在的机制具有重要的医学意义
推动T2 DM改善治疗效果。胰岛素抵抗,一种被称为有效性降低的疾病,
激素胰岛素与改变的葡萄糖稳态和肌肉功能障碍有关。尽管几十年
调查,关键的知识差距仍然存在于负责的分子机制,
胰岛素抵抗的起始和传播。骨骼肌在葡萄糖代谢中起着重要作用
体内平衡,并占餐后葡萄糖处置的大部分。胰岛素信号传导的缺陷
已经假设骨骼肌中的胰岛素途径是导致胰岛素抵抗的主要原因,
高血糖、蛋白质代谢改变和心血管疾病。越来越多的证据表明
丝氨酸/苏氨酸激酶Akt(蛋白激酶B)作为胰岛素作用的关键调节剂。要直接测试
假设通过AKT减少胰岛素信号传导导致胰岛素抵抗并改变肌肉功能,
制造了缺乏骨骼肌特异性AKT信号传导的小鼠,令人惊讶地发现胰岛素可以
在不存在AKT的情况下刺激骨骼肌葡萄糖摄取和利用。这些数据与
胰岛素抵抗的典型分子模型,并表明AKT不是对照中的专性中间体
在所有条件下胰岛素对骨骼肌葡萄糖代谢的影响。这种不依赖AKT的
途径和它的作用碳水化合物的稳态将是本提案的目标1的重点。虽然老鼠缺乏
骨骼肌中的AKT具有正常的葡萄糖摄取和胰岛素敏感性,但我们发现,
表现出明显的肌肉萎缩和线粒体功能障碍,并伴有相应的肌肉缺陷
AKT是肌肉生长和体内功能所必需的。下游
负责AKT控制肌肉生长和功能的机制将在目标2中定义。总的来说,
本建议将建立在这些重要的观察和阐明Akt依赖和独立
控制胰岛素在体内代谢作用的途径。这些实验有可能深刻地
影响我们对胰岛素抵抗潜在途径的机械理解,并将导致
确定T2 DM、心血管和骨骼肌疾病的新治疗靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Michael Titchenell其他文献
Paul Michael Titchenell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Michael Titchenell', 18)}}的其他基金
Hepatic mTORC1 Signaling and the Regulation of Lipid Homeostasis
肝脏 mTORC1 信号转导和脂质稳态的调节
- 批准号:
10552696 - 财政年份:2021
- 资助金额:
$ 39.95万 - 项目类别:
Hepatic mTORC1 Signaling and the Regulation of Lipid Homeostasis
肝脏 mTORC1 信号转导和脂质稳态的调节
- 批准号:
10352468 - 财政年份:2021
- 资助金额:
$ 39.95万 - 项目类别:
Hepatic mTORC1 Signaling and the Regulation of Lipid Homeostasis
肝脏 mTORC1 信号转导和脂质稳态的调节
- 批准号:
10207893 - 财政年份:2021
- 资助金额:
$ 39.95万 - 项目类别:
Regulation of Skeletal Muscle Metabolism by Insulin Signaling
胰岛素信号对骨骼肌代谢的调节
- 批准号:
10502819 - 财政年份:2020
- 资助金额:
$ 39.95万 - 项目类别:
Regulation of Skeletal Muscle Metabolism by Insulin Signaling
胰岛素信号对骨骼肌代谢的调节
- 批准号:
10327861 - 财政年份:2020
- 资助金额:
$ 39.95万 - 项目类别:
Regulation of Skeletal Muscle Metabolism by Insulin Signaling
胰岛素信号对骨骼肌代谢的调节
- 批准号:
10569040 - 财政年份:2020
- 资助金额:
$ 39.95万 - 项目类别:
Insulin regulation of glucose metabolism independent of hepatic Akt
胰岛素对葡萄糖代谢的调节不依赖于肝脏 Akt
- 批准号:
8649460 - 财政年份:2013
- 资助金额:
$ 39.95万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 39.95万 - 项目类别:
Parkinson's disease and aging affect neural activation during continuous gait alterations to the split-belt treadmill: An [18F] FDG PET Study.
帕金森病和衰老会影响分体带跑步机连续步态改变期间的神经激活:[18F] FDG PET 研究。
- 批准号:
400097 - 财政年份:2019
- 资助金额:
$ 39.95万 - 项目类别:
The elucidation of the mechanism by which intestinal epithelial cells affect impaired glucose tolerance during aging
阐明衰老过程中肠上皮细胞影响糖耐量受损的机制
- 批准号:
19K09017 - 财政年份:2019
- 资助金额:
$ 39.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Does aging of osteocytes adversely affect bone metabolism?
骨细胞老化会对骨代谢产生不利影响吗?
- 批准号:
18K09531 - 财政年份:2018
- 资助金额:
$ 39.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Links between affect, executive function, and prefrontal structure in aging: A longitudinal analysis
衰老过程中情感、执行功能和前额叶结构之间的联系:纵向分析
- 批准号:
9766994 - 财政年份:2018
- 资助金额:
$ 39.95万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 39.95万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 39.95万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 39.95万 - 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
- 批准号:
9925164 - 财政年份:2016
- 资助金额:
$ 39.95万 - 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
- 批准号:
9345997 - 财政年份:2016
- 资助金额:
$ 39.95万 - 项目类别:














{{item.name}}会员




