Computational methods using electronic health records and registry data to detect and predict clinical outcomes in rheumatic disease
使用电子健康记录和登记数据检测和预测风湿病临床结果的计算方法
基本信息
- 批准号:10349472
- 负责人:
- 金额:$ 1.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-10 至 2022-03-04
- 项目状态:已结题
- 来源:
- 关键词:AddressAdverse eventAgeAlgorithmsAntirheumatic AgentsAreaAutoimmune DiseasesBiologicalBiological ProductsBiological Response Modifier TherapyCaliforniaCategoriesCessation of lifeCharacteristicsClinicClinicalClinical SciencesClinics and HospitalsCodeCombination MedicationComputing MethodologiesDataData SetDatabasesDemographic FactorsDevelopment PlansDiseaseDisease-Modifying Second-Line DrugsElectronic Health RecordEnvironmentEpidemiologistEpidemiologyEthnic OriginEventFutureGoalsGoldHospitalizationIndividualInfectionInformaticsInstitutesInterdisciplinary StudyK-Series Research Career ProgramsLeadMarketingMentored Research Scientist Development AwardMentorsMentorshipMethodsModelingMonitorMorbidity - disease rateNCI Scholars ProgramOpportunistic InfectionsPatient-Focused OutcomesPatientsPatternPharmaceutical PreparationsPharmacotherapyPopulationPositioning AttributeProbabilityQuality of lifeRaceRandomized Controlled TrialsRecommendationRegistriesReportingResearchResearch PersonnelRheumatismRheumatoid ArthritisRheumatologyRiskRisk AssessmentRisk FactorsSafetySample SizeSan FranciscoSensitivity and SpecificitySerious Adverse EventSeveritiesStructureSubgroupSystemSystemic Lupus ErythematosusTimeTrainingTranslational ResearchUniversitiesUniversity HospitalsValidationWorkadverse event riskbasecareer developmentcomorbiditydata registrydisorder controlelectronic structureethnic minorityexperiencehigh riskimprovedindividual patientindividualized medicineinfection rateinfection risklarge datasetsmedical schoolsmedical specialtiespatient safetypatient stratificationpersonalized medicinepopulation basedpredict clinical outcomepredictive modelingprogramsracial and ethnicresearch and developmentrisk stratificationsafety outcomessexskillssociodemographicsstatisticsstructured datasymposiumtext searchingunstructured data
项目摘要
PROJECT SUMMARY / ABSTRACT
This is a new application for a K01 award for Dr. Milena Gianfrancesco, an epidemiologist at the University of
California, San Francisco (UCSF) School of Medicine, who plans a research program focusing on
understanding risk factors as they relate to rheumatic disease patient outcomes, such as adverse events.
Combined with a training plan focused on computational text mining methods and advanced causal inference
statistics, the goal of the current study is to use large electronic health record and national registry data that
reflects real-world prescribing patterns to examine the risk of infection attributed to biologic disease-modifying
anti-rheumatic drugs in individuals with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE).
While biologic medications have improved disease control and are associated with significant gains in patients’
quality of life, several studies have demonstrated that biologic use is associated with an increased risk of
serious adverse events, such as infection. How this risk differs based on a variety of patient factors, such as
age, race, and ethnicity, is currently unknown, leaving clinicians with insufficient information to predict the
probability of an adverse event occurring in a given patient who is prescribed a particular biologic.
This proposal will utilize established local electronic health record and national registry data to examine over
80,000 individuals with RA and SLE to address three specific aims. In Aim 1, Dr. Gianfrancesco will apply and
validate a text mining system to identify incident clinical and opportunistic infections from clinical notes. In Aim
2, Dr. Gianfrancesco will use the same databases to determine the longitudinal causal effect of biologics on
risk of infection. In Aim 3, a risk-assessment model to predict risk of infection will be developed and validated in
a rheumatology clinic. Findings from this study will further elucidate factors associated with infectious risk for
individuals prescribed biologics, thereby improving their safety in the ambulatory settings.
Dr. Gianfrancesco has assembled an exceptional mentorship team with expertise in computational text mining
methods, advanced causal inference statistics, rheumatology and patient safety outcomes, as well as
experience using national registry data to address these questions. She will have access to a rich research
environment and provided support for career development through programs such as the UCSF Clinical and
Translational Science Institute K-scholars program. Formal coursework and mentoring will also be
supplemented with attendance at national conferences related to rheumatology, epidemiology, and informatics.
Completing the proposed research and career development plan will allow Dr. Gianfrancesco to gain
experience in state-of-the-art computational methods using large datasets to better understand important
patient outcomes, such as serious adverse events. This mentored career development award will provide the
skills, mentorship, and experience necessary to propel her to independence and enable her to lead an
independent multidisciplinary research program.
项目总结/摘要
这是一个新的申请K 01奖博士米莱娜Gianfrancesco,流行病学家在大学
加州,旧金山弗朗西斯科(UCSF)医学院,谁计划的研究计划,重点是
了解与风湿性疾病患者结局相关的风险因素,如不良事件。
结合一个培训计划,重点是计算文本挖掘方法和高级因果推理
统计,目前研究的目标是使用大型电子健康记录和国家登记数据,
反映了现实世界的处方模式,以检查归因于生物疾病修饰的感染风险
类风湿性关节炎(RA)和系统性红斑狼疮(SLE)患者的抗风湿药物。
虽然生物药物改善了疾病控制,并与患者的治疗显著增加有关,
生活质量,几项研究表明,生物制品的使用与生活质量的风险增加有关。
严重不良事件,例如感染。这种风险如何根据各种患者因素而有所不同,例如
年龄,种族和民族,目前尚不清楚,使临床医生没有足够的信息来预测
在处方特定生物制剂的给定患者中发生不良事件的概率。
该提案将利用已建立的当地电子健康记录和国家登记数据,
80,000名RA和SLE患者,以实现三个具体目标。在目标1中,Gianfrancesco博士将提出申请,
验证文本挖掘系统,以从临床笔记中识别偶发临床和机会性感染。在Aim中
2,Gianfrancesco博士将使用相同的数据库来确定生物制剂对
感染的风险。在目标3中,将制定一个风险评估模型,以预测感染风险,并在
风湿病诊所本研究的结果将进一步阐明与感染风险相关的因素
个人处方的生物制剂,从而提高他们在流动环境中的安全性。
博士Gianfrancesco组建了一个具有计算文本挖掘专业知识的杰出导师团队
方法,先进的因果推理统计,流变学和患者安全性结果,以及
利用国家登记册数据解决这些问题的经验。她将有机会接触到丰富的研究
环境,并通过诸如UCSF临床和
翻译科学研究所K学者计划。正式的课程和指导也将
并参加与风湿病学、流行病学和信息学有关的国家会议。
完成拟议的研究和职业发展计划将使Gianfrancesco博士获得
在使用大型数据集的最先进的计算方法,以更好地了解重要的经验
患者结局,如严重不良事件。这个指导职业发展奖将提供
技能,指导和经验,以推动她独立,使她能够领导一个
独立的多学科研究计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Milena Anne Gianfrancesco其他文献
Milena Anne Gianfrancesco的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Milena Anne Gianfrancesco', 18)}}的其他基金
Computational methods using electronic health records and registry data to detect and predict clinical outcomes in rheumatic disease
使用电子健康记录和登记数据检测和预测风湿病临床结果的计算方法
- 批准号:
9912723 - 财政年份:2019
- 资助金额:
$ 1.26万 - 项目类别:
Computational methods using electronic health records and registry data to detect and predict clinical outcomes in rheumatic disease
使用电子健康记录和登记数据检测和预测风湿病临床结果的计算方法
- 批准号:
10400540 - 财政年份:2019
- 资助金额:
$ 1.26万 - 项目类别:
Examining the causal effect of sociodemographic and genetic factors on patient safety outcomes in individuals prescribed high-risk immunosuppressive medications
检查社会人口统计学和遗传因素对服用高风险免疫抑制药物的个体患者安全结果的因果影响
- 批准号:
9327592 - 财政年份:2017
- 资助金额:
$ 1.26万 - 项目类别:
Direct and indirect effects of obesity genes on multiple sclerosis
肥胖基因对多发性硬化症的直接和间接影响
- 批准号:
8984235 - 财政年份:2015
- 资助金额:
$ 1.26万 - 项目类别:
相似海外基金
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10707830 - 财政年份:2023
- 资助金额:
$ 1.26万 - 项目类别:
Hospital characteristics and Adverse event Rate Measurements (HARM) Evaluated over 21 years.
医院特征和不良事件发生率测量 (HARM) 经过 21 年的评估。
- 批准号:
479728 - 财政年份:2023
- 资助金额:
$ 1.26万 - 项目类别:
Operating Grants
Analysis of ECOG-ACRIN adverse event data to optimize strategies for the longitudinal assessment of tolerability in the context of evolving cancer treatment paradigms (EVOLV)
分析 ECOG-ACRIN 不良事件数据,以优化在不断发展的癌症治疗范式 (EVOLV) 背景下纵向耐受性评估的策略
- 批准号:
10884567 - 财政年份:2023
- 资助金额:
$ 1.26万 - 项目类别:
AE2Vec: Medical concept embedding and time-series analysis for automated adverse event detection
AE2Vec:用于自动不良事件检测的医学概念嵌入和时间序列分析
- 批准号:
10751964 - 财政年份:2023
- 资助金额:
$ 1.26万 - 项目类别:
Understanding the real-world adverse event risks of novel biosimilar drugs
了解新型生物仿制药的现实不良事件风险
- 批准号:
486321 - 财政年份:2022
- 资助金额:
$ 1.26万 - 项目类别:
Studentship Programs
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
- 批准号:
10676786 - 财政年份:2022
- 资助金额:
$ 1.26万 - 项目类别:
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
- 批准号:
10440970 - 财政年份:2022
- 资助金额:
$ 1.26万 - 项目类别:
Improving Adverse Event Reporting on Cooperative Oncology Group Trials
改进肿瘤学合作组试验的不良事件报告
- 批准号:
10642998 - 财政年份:2022
- 资助金额:
$ 1.26万 - 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10482465 - 财政年份:2022
- 资助金额:
$ 1.26万 - 项目类别:
Expanding and Scaling Two-way Texting to Reduce Unnecessary Follow-Up and Improve Adverse Event Identification Among Voluntary Medical Male Circumcision Clients in the Republic of South Africa
扩大和扩大双向短信,以减少南非共和国自愿医疗男性包皮环切术客户中不必要的后续行动并改善不良事件识别
- 批准号:
10191053 - 财政年份:2020
- 资助金额:
$ 1.26万 - 项目类别: