Retinal foveal midget connectivity after acute photoreceptor loss
急性光感受器丧失后视网膜中心凹侏儒连接
基本信息
- 批准号:10350118
- 负责人:
- 金额:$ 19.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcuteAffectAnimal ModelAnimalsAreaBehavioralBiochemicalBlindnessBrainCell DeathCell TherapyCell TransplantationCellsCellular MorphologyCellular StructuresCessation of lifeColor VisionsCommunitiesConeData SetDiseaseEnvironmentExhibitsEyeFaceFunctional disorderFutureHandHumanInjuryJapanKnowledgeLasersLeadLearningLight CoagulationLightingLocationMacacaModelingMolecularMolecular AnalysisMorphologyNatureNervous system structureNeurodegenerative DisordersNeurogliaNeuronsOutputPathologicPathway interactionsPatternPhotoreceptorsPrimatesPrivatizationProceduresProductionReplacement TherapyResearch PersonnelResolutionResourcesRetinaRetinal ConeRetinal Ganglion CellsRetinal PhotoreceptorsRodent ModelSamplingScanning Electron MicroscopySensoryStructureSynapsesTestingTimeTissue FixationTissue SampleTissuesTransplantationTraumaVisionVisual system structureWorkcell replacement therapycell typeconnectomedesignextrastriate visual cortexfovea centralisganglion cellin vivoinjuredinsightlaser photocoagulationneural circuitneuron lossnonhuman primatereconstructionrepairedresilienceretinal neuronsample fixationsight restorationstem cells
项目摘要
Project Summary/Abstract
Neuronal cell death due to injury or disease leads to circuit dysfunction and behavioral deficits. In the
visual system, retinal photoreceptor death is a major cause of blindness. Current efforts to restore sight
include replacing lost photoreceptors via stem-cell therapy, transplantation of differentiated neurons and
inducing neuron production from glia. It is evident that designing strategies for successful integration of
‘new’ photoreceptors requires knowledge of the nature, extent and progression of neuronal remodeling
upon photoreceptor loss. Although much has been learned from several non-primate models of injury and
disease, we do not yet know about the circuit rearrangements that occur within the primate fovea, the
region responsible for high acuity and color vision in humans and non-human primates. This project will
fill this significant gap in knowledge by capitalizing on ex vivo fixed Macaque retinal tissue donated by
collaborators at the RIKEN, Japan, in which cone photoreceptors in the fovea were ablated by laser-
photocoagulation. We propose to generate 3D volumes of the tissue samples at ultrastructural resolution
using serial block-face scanning electron microscopy (Aim 1) and reconstruct the foveal midget circuits,
which normally underlie high-acuity vision (Aim 2). We will generate 3D volumes of foveal samples that
received laser-photocoagulation 2 weeks, 2 months or 6 months prior to enucleation. Donated retinal
tissue from unlasered eyes will serve as controls. Comparison of foveal cellular morphology and the
midget connectomes across these samples will provide the first insights into the nature and progression
of remodeling of this critical retinal synaptic pathway over time. Comparison of ON and OFF midget
connectomes will also reveal whether or not there are differences in resilience and plasticity between
these parallel retinal pathways, as discovered in rodent models of injury and disease. In addition to
providing a basic understanding of how the foveal midget circuitry responds to acute cone loss, the EM
volumes will also be a valuable resource for the retinal community for further analyses of the structure
and connectivity of other primate retinal neurons and glia affected by cone loss. Knowledge gained from
this project is an essential step towards halting synaptic miswiring and possibly diverting pathological
changes that could lead to an environment in the primate fovea that is not conducive to circuit repair.
项目总结/摘要
由于损伤或疾病导致的神经元细胞死亡导致回路功能障碍和行为缺陷。在
在视觉系统中,视网膜感光细胞死亡是致盲的主要原因。目前恢复视力的努力
包括通过干细胞疗法替换丢失光感受器,移植分化的神经元,
从神经胶质诱导神经元产生。很明显,设计战略,成功地整合
“新”光感受器需要了解神经元重塑的性质、程度和进展
光感受器丧失。尽管从几种非灵长类动物的损伤模型中已经学到了很多,
疾病,我们还不知道电路重排发生在灵长类动物的中央凹,
在人类和非人类灵长类动物中负责高敏锐度和颜色视觉的区域。该项目将
通过利用由捐赠的离体固定的猕猴视网膜组织来填补这一重大知识空白,
日本RIKEN的合作者,其中通过激光消融中央凹中的锥状光感受器,
光凝我们建议以超微结构分辨率生成组织样本的3D体积
使用串行块面扫描电子显微镜(Aim 1)并重建中央凹侏儒电路,
这通常是高敏锐度视力的基础(目标2)。我们将生成中央凹样本的3D体积,
分别于眼球摘除术前2周、2个月、6个月行激光光凝。捐赠视网膜
来自未激光照射的眼睛的组织将用作对照。视网膜中央凹细胞形态学与视网膜神经节细胞的比较
这些样本中的小型连接体将首次提供对自然和发展的见解,
随着时间的推移,这个关键的视网膜突触通路的重塑。ON和OFF侏儒的比较
连接体也将揭示是否有差异的弹性和可塑性之间
这些平行的视网膜通路,正如在啮齿动物损伤和疾病模型中发现的那样。除了
提供了对中央凹侏儒电路如何响应急性视锥细胞丢失的基本理解,EM
卷也将是一个宝贵的资源,为视网膜社区的进一步分析的结构
以及其他灵长类视网膜神经元和神经胶质细胞的连接受到视锥细胞损失的影响。获得的消息
这个项目是阻止突触错误连接的重要一步,
这些变化可能导致灵长类动物中央凹的环境不利于电路修复。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rachel O Wong其他文献
Rachel O Wong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rachel O Wong', 18)}}的其他基金
Retinal foveal midget connectivity after acute photoreceptor loss
急性光感受器丧失后视网膜中心凹侏儒连接
- 批准号:
10541889 - 财政年份:2022
- 资助金额:
$ 19.44万 - 项目类别:
Circuit Assembly in the Vertebrate Retina-Supplement
脊椎动物视网膜补充中的电路组装
- 批准号:
8792319 - 财政年份:2014
- 资助金额:
$ 19.44万 - 项目类别:
2013 Dendrites: Molecules, Structure and Function Gordon Research Conference and
2013 树突:分子、结构和功能戈登研究会议和
- 批准号:
8527252 - 财政年份:2013
- 资助金额:
$ 19.44万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 19.44万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 19.44万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 19.44万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 19.44万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 19.44万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 19.44万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 19.44万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 19.44万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 19.44万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 19.44万 - 项目类别:
Operating Grants