Engineering of PPR base editors to repair pathogenic SNPs at the level of RNA

PPR 碱基编辑器工程可在 RNA 水平修复致病性 SNP

基本信息

项目摘要

Abstract Many pathogenic T-to-C SNPs have been identified in humans including several in the mitochondrial genome linked to Leigh syndrome. The mitochondrial genome is especially difficult to manipulate using existing gene editing technologies due to inefficient transfer of guide RNAs through the mitochondrial membranes. The organelle genomes of most land plants contain hundreds of ancient T-to-C mutations that are “repaired” by C-to-U RNA editing before translation to produce functional proteins. The sufficient editing apparatus in plants has been recently discovered to be comprised of a single protein with an RNA binding PPR tract domain and a C-terminal catalytic domain called the DYW domain. The PPR domains follow a combinatorial code where two polar amino acid positions strongly influence the ribobase recognized. Changes in the polar amino acids have been correlated with predictable changes in RNA substrate specificity making the PPR domains programable. This grant aims to reprogram plant PPR editing factors to recognize human SNPs. In the first aim of the proposal, the editing factor PPR65 will be manipulated through engineered amino acid changes in the PPR domains to target mitochondrial pathogenic SNPs. In a second aim, local sequence requirements imposed by the enzymatic domain will be investigated and DYW domain swapping experiments should identify a catalytic domain with the least sequence bias. Catalytic sequence bias could potentially limit application of repair of human SNPs and the diversity of targeted sequences in higher plants suggest such bias is not universal. Both aims seek to apply the plant RNA editing machinery to make specific base edits to improve human health. Advantages in using the plant system include the prevention of permanent off-target effects through RNA recognition by the PPR tract and a fully proteinaceous, compact structure that can theoretically be efficiently delivered to mitochondria. This project will also provide research opportunities for six under- represented minority students in biochemistry each semester. Primary research will foster excitement for biochemistry and lead to a greater equity into the backgrounds of students prepared for STEM careers.
摘要 已经在人类中鉴定了许多致病性T-至-C SNP,包括在人类中的几种。 线粒体基因组与利氏综合征有关线粒体基因组尤其是 由于引导物的低效转移,难以使用现有的基因编辑技术进行操作 RNA穿过线粒体膜。大多数陆生植物的细胞器基因组 包含数百个古老的T到C突变,这些突变在之前被C到U RNA编辑“修复”。 翻译以产生功能性蛋白质。植物中足够的编辑装置已经被 最近发现由具有RNA结合PPR束结构域的单一蛋白质组成 和一个称为DYW结构域的C-末端催化结构域。PPR域遵循 两个极性氨基酸位置强烈影响核糖基的组合密码 认可.极性氨基酸的变化与蛋白质的可预测变化相关 RNA底物特异性使PPR结构域可编程。这笔赠款旨在重新规划 植物PPR编辑因子来识别人类SNP。在第一个目标的建议,编辑 因子PPR 65将通过PPR结构域中的工程化氨基酸改变来操纵 针对线粒体致病性SNP。在第二个目标中,局部序列要求 将研究由酶结构域施加的酶活性,并进行DYW结构域交换实验 应该识别具有最小序列偏差的催化结构域。催化序列偏差可能 潜在地限制了人类SNPs修复的应用和靶序列的多样性, 高等植物表明这种偏见并不普遍。这两个目标都试图将植物RNA编辑 机器进行特定的基础编辑,以改善人类健康。使用该工厂的优势 系统包括通过RNA识别预防永久脱靶效应, PPR道和完全蛋白质的紧凑结构,理论上可以有效地 传递到线粒体。该项目还将为六个以下的研究提供机会- 代表少数民族学生上生物化学课初步研究将促进 兴奋的生物化学和导致更大的公平到学生的背景 为STEM职业做好准备。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A ribonuclease activity linked to DYW1 in vitro is inhibited by RIP/MORF proteins.
  • DOI:
    10.1038/s41598-023-36969-6
  • 发表时间:
    2023-07-03
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Boyd, Robert D.;Hayes, Michael L.
  • 通讯作者:
    Hayes, Michael L.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Lloyd Hayes其他文献

Michael Lloyd Hayes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Lloyd Hayes', 18)}}的其他基金

The Role of Zinc ions for RNA Binding and Catalytic Function of the DYW-deaminase
锌离子对 RNA 结合的作用和 DYW 脱氨酶的催化功能
  • 批准号:
    9280248
  • 财政年份:
    2017
  • 资助金额:
    $ 43.8万
  • 项目类别:
The Role of Zinc ions for RNA Binding and Catalytic Function of the DYW-deaminase
锌离子对 RNA 结合的作用和 DYW 脱氨酶的催化功能
  • 批准号:
    9765338
  • 财政年份:
    2017
  • 资助金额:
    $ 43.8万
  • 项目类别:

相似海外基金

Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
  • 批准号:
    BB/Y006380/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.8万
  • 项目类别:
    Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
  • 批准号:
    24K17112
  • 财政年份:
    2024
  • 资助金额:
    $ 43.8万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
  • 批准号:
    2300890
  • 财政年份:
    2023
  • 资助金额:
    $ 43.8万
  • 项目类别:
    Continuing Grant
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
  • 批准号:
    23K06918
  • 财政年份:
    2023
  • 资助金额:
    $ 43.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
  • 批准号:
    23K05758
  • 财政年份:
    2023
  • 资助金额:
    $ 43.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
  • 批准号:
    23K04668
  • 财政年份:
    2023
  • 资助金额:
    $ 43.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
  • 批准号:
    2888395
  • 财政年份:
    2023
  • 资助金额:
    $ 43.8万
  • 项目类别:
    Studentship
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
  • 批准号:
    10761044
  • 财政年份:
    2023
  • 资助金额:
    $ 43.8万
  • 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
  • 批准号:
    10728925
  • 财政年份:
    2023
  • 资助金额:
    $ 43.8万
  • 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
  • 批准号:
    10757309
  • 财政年份:
    2023
  • 资助金额:
    $ 43.8万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了