Engineering of PPR base editors to repair pathogenic SNPs at the level of RNA
PPR 碱基编辑器工程可在 RNA 水平修复致病性 SNP
基本信息
- 批准号:10359636
- 负责人:
- 金额:$ 43.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-20 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffinityAmino AcidsBase SequenceBindingBiochemistryBiological AssayC-terminalCatalytic DomainCellsCodeConsensus SequenceCytidine DeaminaseCytosineDNA RepairDNA Repair PathwayDataDeaminaseDeaminationDiseaseElementsEnd Point AssayEngineeringEnzymesFosteringFutureGenesGenetic DiseasesGenomeGoalsGrantGuide RNAHealthHumanHybridsIn VitroInvestigationKnowledgeLaboratoriesLeadLeigh DiseaseLinkMitochondriaMitochondrial DNAModificationMutationNucleotidesOrganellesPathogenicityPathologyPlant RNAPlantsPositioning AttributePreventionProteinsRNARNA BindingRNA EditingRNA SequencesRandomizedRecombinantsResearchReverse Transcriptase Polymerase Chain ReactionSTEM careerSeriesSiteSpecificityStructureStudentsSubstrate SpecificitySystemTechnologyTherapeuticTranscriptTranslationsUnderrepresented MinorityVariantVascular Plantbasecombinatorialdesignexperimental studyflexibilityhuman diseaseimprovedin vitro Assayminority studentmitochondrial genomemitochondrial membranepreferenceprogramsrepairedrestriction enzymetool
项目摘要
Abstract
Many pathogenic T-to-C SNPs have been identified in humans including several in the
mitochondrial genome linked to Leigh syndrome. The mitochondrial genome is especially
difficult to manipulate using existing gene editing technologies due to inefficient transfer of guide
RNAs through the mitochondrial membranes. The organelle genomes of most land plants
contain hundreds of ancient T-to-C mutations that are “repaired” by C-to-U RNA editing before
translation to produce functional proteins. The sufficient editing apparatus in plants has been
recently discovered to be comprised of a single protein with an RNA binding PPR tract domain
and a C-terminal catalytic domain called the DYW domain. The PPR domains follow a
combinatorial code where two polar amino acid positions strongly influence the ribobase
recognized. Changes in the polar amino acids have been correlated with predictable changes in
RNA substrate specificity making the PPR domains programable. This grant aims to reprogram
plant PPR editing factors to recognize human SNPs. In the first aim of the proposal, the editing
factor PPR65 will be manipulated through engineered amino acid changes in the PPR domains
to target mitochondrial pathogenic SNPs. In a second aim, local sequence requirements
imposed by the enzymatic domain will be investigated and DYW domain swapping experiments
should identify a catalytic domain with the least sequence bias. Catalytic sequence bias could
potentially limit application of repair of human SNPs and the diversity of targeted sequences in
higher plants suggest such bias is not universal. Both aims seek to apply the plant RNA editing
machinery to make specific base edits to improve human health. Advantages in using the plant
system include the prevention of permanent off-target effects through RNA recognition by the
PPR tract and a fully proteinaceous, compact structure that can theoretically be efficiently
delivered to mitochondria. This project will also provide research opportunities for six under-
represented minority students in biochemistry each semester. Primary research will foster
excitement for biochemistry and lead to a greater equity into the backgrounds of students
prepared for STEM careers.
抽象的
在人类中已经确定了许多致病性T-to-c SNP
线粒体基因组与Leigh综合征有关。线粒体基因组尤其是
由于指南的效率低下,使用现有基因编辑技术难以操纵
RNA通过线粒体膜。大多数土地植物的细胞器基因组
包含数百个古老的T-t-c-c突变,这些突变已通过C-TO-U RNA编辑“修复”
翻译以产生功能蛋白。植物中足够的编辑设备已经
最近被发现已完成为具有RNA结合PPR域的单个蛋白质
和一个称为DYW结构域的C末端催化结构域。 PPR域遵循
组合代码,其中两个极性氨基酸位置强烈影响核对酶
认可。极性氨基酸的变化与可预测的变化有关
RNA底物特异性使PPR域可编程。该赠款旨在重新编程
植物PPR编辑因素识别人类SNP。在提案的第一个目的中,编辑
因子PPR65将通过PPR域中的工程氨基酸变化来操纵
靶向线粒体致病性SNP。在第二个目标中,本地序列要求
将研究酶结构域施加的,并进行DYW域交换实验
应鉴定具有最小序列偏差的催化域。催化序列偏差可能
潜在地限制了人类SNP修复的应用以及目标序列的多样性
较高的植物表明这种偏见不是普遍的。两种目的都试图应用植物RNA编辑
进行特定基础编辑以改善人类健康的机械。使用植物的优势
系统包括通过通过RNA识别的RNA识别的永久脱靶效应
PPR道和完全蛋白质的紧凑结构,理论上可以有效
传递到线粒体。该项目还将为六个不足的研究机会提供研究机会
每个学期都代表少数族裔学生的生物化学。基本研究将促进
对生物化学的兴奋,并导致更大的平等进入学生的背景
为STEM职业准备。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A ribonuclease activity linked to DYW1 in vitro is inhibited by RIP/MORF proteins.
- DOI:10.1038/s41598-023-36969-6
- 发表时间:2023-07-03
- 期刊:
- 影响因子:4.6
- 作者:Boyd, Robert D.;Hayes, Michael L.
- 通讯作者:Hayes, Michael L.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Lloyd Hayes其他文献
Michael Lloyd Hayes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Lloyd Hayes', 18)}}的其他基金
The Role of Zinc ions for RNA Binding and Catalytic Function of the DYW-deaminase
锌离子对 RNA 结合的作用和 DYW 脱氨酶的催化功能
- 批准号:
9280248 - 财政年份:2017
- 资助金额:
$ 43.8万 - 项目类别:
The Role of Zinc ions for RNA Binding and Catalytic Function of the DYW-deaminase
锌离子对 RNA 结合的作用和 DYW 脱氨酶的催化功能
- 批准号:
9765338 - 财政年份:2017
- 资助金额:
$ 43.8万 - 项目类别:
相似国自然基金
胃肠道微生物宏基因组的氨基酸消旋酶挖掘及分析
- 批准号:32360034
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
甘油制α-氨基酸钌基双金属催化剂的构筑及产物调控策略
- 批准号:22308255
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
射频协同纳他霉素干扰氨基酸转运高效杀灭黑曲霉的分子机制研究
- 批准号:32302279
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
αKG-NHFe酶FtmOx1通过氨基酸多重构象变化催化内过氧化反应的机理研究
- 批准号:22307037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
18F-TZA分子探针靶向识别胶质瘤IDH1突变及其与氨基酸转运体的关联研究
- 批准号:82302337
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanisms of HIV fitness and drug resistance inferred from high-resolution molecular dynamics and sequence co-variation models
从高分辨率分子动力学和序列共变模型推断出 HIV 适应性和耐药性的机制
- 批准号:
10750627 - 财政年份:2023
- 资助金额:
$ 43.8万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 43.8万 - 项目类别:
Proteasomal recruiters of PAX3-FOXO1 Designed via Sequence-Based Generative Models
通过基于序列的生成模型设计的 PAX3-FOXO1 蛋白酶体招募剂
- 批准号:
10826068 - 财政年份:2023
- 资助金额:
$ 43.8万 - 项目类别:
Examining G-quadruplex metal site heterogeneity and the influence of peptide binding using 2D IR spectroscopy
使用 2D 红外光谱检查 G-四链体金属位点异质性和肽结合的影响
- 批准号:
10730921 - 财政年份:2023
- 资助金额:
$ 43.8万 - 项目类别:
Structural and Functional Synthetic Proteomimetics of Ankyrin Repeat Proteins
锚蛋白重复蛋白的结构和功能合成蛋白质模拟
- 批准号:
10537913 - 财政年份:2022
- 资助金额:
$ 43.8万 - 项目类别: