A web-based framework for multi-modal visualization and annotation of neuroanatomical data
基于网络的神经解剖数据多模式可视化和注释框架
基本信息
- 批准号:10365435
- 负责人:
- 金额:$ 163.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-16 至 2024-09-14
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAnatomyAnimal ExperimentsAnimal ModelAnimalsAtlasesAttentionBRAIN initiativeBedsBig DataBrainBrain DiseasesCell physiologyCellsCerebrovascular systemCollaborationsCommunitiesComplexComputer softwareCytologyDataData DisplayData SetDatabasesDevelopmentDistantDistributed DatabasesDocumentationElectrodesElectron MicroscopyElectrophysiology (science)EnsureEvaluationFOS geneFeedbackFoundationsFunctional ImagingGenetic MarkersGoalsGuidelinesHistologyHourImageImage AnalysisImplantInstructionInvestmentsLabelLaboratoriesLateralLeadLearningLightMachine LearningMetadataMethodsMicroscopyMidbrain structureModernizationModificationMolecularNamesNeuronsNeurosciencesOnline SystemsPathway interactionsPhysiologicalResearchResearch PersonnelResolutionResourcesSamplingScanningScientistSiteSliceSoftware ToolsSpecificityStainsStandardizationStress TestsSurveysTechniquesTestingTimeTracerTrainingUnited States National Institutes of HealthViralVisualizationannotation systemautomated segmentationbasecloud basedcognitive systemcomputing resourcesdensityimaging modalityinterestinteroperabilitylaptoplarge datasetslight microscopymultimodalityneurovascularperformance siteprogramsreconstructionrelating to nervous systemskillssoftware developmentterabytethree-dimensional visualizationtooltwo-photonuser-friendlyweb siteweb-based tool
项目摘要
PROJECT SUMMARY/ABSTRACT
Modern experimental approaches allow researchers to collect a variety of whole-brain data from the same animal
via different anatomical labels, including tracers, genetic markers, and fiducial marks from recording electrodes.
Unfortunately, viewing and analysis methods have not kept pace with the complexity of these datasets, which
can be as large as several terabytes. This limitation makes it time- and resource-intensive to view and manipulate
light-microscopy data or to share these datasets with distant laboratories. Currently available software solves
some aspects of this problem, but no existing program provides a user-friendly way to visualize, annotate, and
compare large neuroanatomical datasets across research sites, with minimal investment of computational
resources. We propose to develop a web-based tool, named BrainSharer, to allow researchers to access,
visualize, align, share, and semi-automatically annotate brain-wide data within a common framework. The
foundation for this tool will be provided by Neuroglancer, a generic web-based volumetric viewer first developed
at Google and then adapted for use in electron microscopy laboratories. While some of its current features are
useful across applications, existing versions of Neuroglancer are not optimized for light-microscopy data. In
particular, they do not realize the potential for sharing, viewing, and editing data across multi-laboratory
collaborations, such as U19 projects. To enable BrainSharer to serve data rapidly and to save and restore
sessions, we will add a modular distributed database to synchronize metadata across laboratories. In addition,
we will tailor BrainSharer for light microscopy by displaying data in formats independent of the imaging modality,
adding semiautomatic means to segment cell bodies and processes, adding tools for annotation (with special
attention to defining cytological boundaries in three dimensions and tracing projection pathways), and adding
ways to incorporate auxiliary data such as electrode tracks. In addition, we will integrate alignment tools into
BrainSharer, so that separate datasets can be co-registered, visualized, and annotated in the same framework,
along with established and emerging atlases. As test beds for development of BrainSharer, we will use three
types of datasets from our U19 projects: whole-brain disynaptic and polysynaptic tracing, activity-based staining
with c-fos, and neurovascular data. All software, training datasets, and video tutorials for BrainSharer will be
made freely available to the community, hosted on our website, along with a slice histology dataset and an
electrophysiology dataset with probes implanted throughout the brain. To orient new users, we will also provide
a Jupyter notebook for converting raw, intermediate, and registered light-sheet data, along with detected cells
and brain atlases, to precomputed format, so they can be loaded into BrainSharer. When complete, BrainSharer
will make it straightforward for researchers to use their laptops to combine and compare large datasets from
different anatomical labels for viewing and analysis relative to reference atlases, and to share this information
across performance sites, thus increasing the ease of use and interoperability of big data in neuroscience.
项目总结/摘要
现代实验方法允许研究人员从同一动物身上收集各种全脑数据
通过不同的解剖标签,包括示踪剂,遗传标记,和来自记录电极的基准标记。
不幸的是,查看和分析方法没有跟上这些数据集的复杂性,
可以大到几个TB。这种限制使得查看和操作
光学显微镜数据或与远程实验室共享这些数据集。目前可用的软件解决了
这个问题的一些方面,但没有现有的程序提供了一个用户友好的方式来可视化,注释,
比较研究中心之间的大型神经解剖数据集,
资源我们建议开发一个基于网络的工具,名为BrainSharer,允许研究人员访问,
可视化、对齐、共享和半自动注释通用框架内的全脑数据。的
Neuroglancer是一种基于网络的通用体积查看器,它首先开发了一种基于网络的体积查看器
在谷歌,然后适用于电子显微镜实验室。虽然它目前的一些功能是
尽管Neuroglancer在应用程序中非常有用,但现有版本的Neuroglancer并未针对光学显微镜数据进行优化。在
特别是,他们没有意识到跨多个实验室共享、查看和编辑数据的潜力
例如U19项目。使BrainSharer能够快速提供数据并保存和恢复
会议,我们将增加一个模块化的分布式数据库,以同步跨实验室的元数据。此外,本发明还提供了一种方法,
我们将为光学显微镜定制BrainSharer,以独立于成像模式的格式显示数据,
添加半自动方法来分割细胞体和过程,添加注释工具(具有特殊的
注意在三维空间中定义细胞学边界并追踪投影路径),并添加
结合诸如电极轨迹的辅助数据的方法。此外,我们还将整合对齐工具,
BrainSharer,这样单独的数据集可以在同一个框架中共同注册,可视化和注释,
沿着而来的还有已建立和新兴的地图集。作为BrainSharer开发的测试平台,我们将使用三个
我们U19项目的数据集类型:全脑双突触和多突触追踪,基于活动的染色
c-fos和神经血管数据。BrainSharer的所有软件、训练数据集和视频教程都将
免费提供给社区,托管在我们的网站上,沿着切片组织学数据集和
电生理学数据集与探针植入整个大脑。为了引导新用户,我们还将
一种用于转换原始、中间和记录的光片数据以及沿着检测到的细胞的字节笔记本
和大脑地图集,以预先计算的格式,这样他们就可以加载到BrainSharer。完成后,BrainSharer
将使研究人员能够直接使用笔记本电脑来联合收割机和比较来自
不同的解剖标签,用于查看和分析相对于参考图集,并共享此信息
跨性能站点,从而提高神经科学中大数据的易用性和互操作性。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Kleinfeld其他文献
David Kleinfeld的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Kleinfeld', 18)}}的其他基金
Direct wavefront sensing and adaptive optics to enable two-photon imaging axons and spines throughout all of cortex
直接波前传感和自适应光学器件可实现整个皮层的双光子成像轴突和脊柱
- 批准号:
10640249 - 财政年份:2019
- 资助金额:
$ 163.45万 - 项目类别:
Direct wavefront sensing and adaptive optics to enable two-photon imaging axons and spines throughout all of cortex
直接波前传感和自适应光学器件可实现整个皮层的双光子成像轴突和脊柱
- 批准号:
10425220 - 财政年份:2019
- 资助金额:
$ 163.45万 - 项目类别:
Direct wavefront sensing and adaptive optics to enable two-photon imaging axons and spines throughout all of cortex
直接波前传感和自适应光学器件可实现整个皮层的双光子成像轴突和脊柱
- 批准号:
10021661 - 财政年份:2019
- 资助金额:
$ 163.45万 - 项目类别:
Imaging the molecular constituents of the brain vasculature and lymphatic connectome
对脑脉管系统和淋巴连接组的分子成分进行成像
- 批准号:
10834499 - 财政年份:2019
- 资助金额:
$ 163.45万 - 项目类别:
Realization of Optical Cell-based Reporters for in vivo Detection of Neuropeptides
用于神经肽体内检测的基于光学细胞的报告基因的实现
- 批准号:
9213616 - 财政年份:2016
- 资助金额:
$ 163.45万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 163.45万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 163.45万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 163.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 163.45万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 163.45万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 163.45万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 163.45万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 163.45万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 163.45万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 163.45万 - 项目类别:
Studentship














{{item.name}}会员




