A web-based framework for multi-modal visualization and annotation of neuroanatomical data

基于网络的神经解剖数据多模式可视化和注释框架

基本信息

  • 批准号:
    10365435
  • 负责人:
  • 金额:
    $ 163.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-16 至 2024-09-14
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT Modern experimental approaches allow researchers to collect a variety of whole-brain data from the same animal via different anatomical labels, including tracers, genetic markers, and fiducial marks from recording electrodes. Unfortunately, viewing and analysis methods have not kept pace with the complexity of these datasets, which can be as large as several terabytes. This limitation makes it time- and resource-intensive to view and manipulate light-microscopy data or to share these datasets with distant laboratories. Currently available software solves some aspects of this problem, but no existing program provides a user-friendly way to visualize, annotate, and compare large neuroanatomical datasets across research sites, with minimal investment of computational resources. We propose to develop a web-based tool, named BrainSharer, to allow researchers to access, visualize, align, share, and semi-automatically annotate brain-wide data within a common framework. The foundation for this tool will be provided by Neuroglancer, a generic web-based volumetric viewer first developed at Google and then adapted for use in electron microscopy laboratories. While some of its current features are useful across applications, existing versions of Neuroglancer are not optimized for light-microscopy data. In particular, they do not realize the potential for sharing, viewing, and editing data across multi-laboratory collaborations, such as U19 projects. To enable BrainSharer to serve data rapidly and to save and restore sessions, we will add a modular distributed database to synchronize metadata across laboratories. In addition, we will tailor BrainSharer for light microscopy by displaying data in formats independent of the imaging modality, adding semiautomatic means to segment cell bodies and processes, adding tools for annotation (with special attention to defining cytological boundaries in three dimensions and tracing projection pathways), and adding ways to incorporate auxiliary data such as electrode tracks. In addition, we will integrate alignment tools into BrainSharer, so that separate datasets can be co-registered, visualized, and annotated in the same framework, along with established and emerging atlases. As test beds for development of BrainSharer, we will use three types of datasets from our U19 projects: whole-brain disynaptic and polysynaptic tracing, activity-based staining with c-fos, and neurovascular data. All software, training datasets, and video tutorials for BrainSharer will be made freely available to the community, hosted on our website, along with a slice histology dataset and an electrophysiology dataset with probes implanted throughout the brain. To orient new users, we will also provide a Jupyter notebook for converting raw, intermediate, and registered light-sheet data, along with detected cells and brain atlases, to precomputed format, so they can be loaded into BrainSharer. When complete, BrainSharer will make it straightforward for researchers to use their laptops to combine and compare large datasets from different anatomical labels for viewing and analysis relative to reference atlases, and to share this information across performance sites, thus increasing the ease of use and interoperability of big data in neuroscience.
项目总结/文摘

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Kleinfeld其他文献

David Kleinfeld的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Kleinfeld', 18)}}的其他基金

Project 1
项目1
  • 批准号:
    10470265
  • 财政年份:
    2021
  • 资助金额:
    $ 163.45万
  • 项目类别:
Project 1
项目1
  • 批准号:
    10294712
  • 财政年份:
    2021
  • 资助金额:
    $ 163.45万
  • 项目类别:
Project 1
项目1
  • 批准号:
    10649643
  • 财政年份:
    2021
  • 资助金额:
    $ 163.45万
  • 项目类别:
Direct wavefront sensing and adaptive optics to enable two-photon imaging axons and spines throughout all of cortex
直接波前传感和自适应光学器件可实现整个皮层的双光子成像轴突和脊柱
  • 批准号:
    10640249
  • 财政年份:
    2019
  • 资助金额:
    $ 163.45万
  • 项目类别:
Direct wavefront sensing and adaptive optics to enable two-photon imaging axons and spines throughout all of cortex
直接波前传感和自适应光学器件可实现整个皮层的双光子成像轴突和脊柱
  • 批准号:
    10425220
  • 财政年份:
    2019
  • 资助金额:
    $ 163.45万
  • 项目类别:
Direct wavefront sensing and adaptive optics to enable two-photon imaging axons and spines throughout all of cortex
直接波前传感和自适应光学器件可实现整个皮层的双光子成像轴突和脊柱
  • 批准号:
    10021661
  • 财政年份:
    2019
  • 资助金额:
    $ 163.45万
  • 项目类别:
Imaging the molecular constituents of the brain vasculature and lymphatic connectome
对脑脉管系统和淋巴连接组的分子成分进行成像
  • 批准号:
    10834499
  • 财政年份:
    2019
  • 资助金额:
    $ 163.45万
  • 项目类别:
Descending Control of Orofacial Behavior
口面部行为的降序控制
  • 批准号:
    10413916
  • 财政年份:
    2018
  • 资助金额:
    $ 163.45万
  • 项目类别:
Descending Control of Orofacial Behavior
口面部行为的降序控制
  • 批准号:
    10199076
  • 财政年份:
    2018
  • 资助金额:
    $ 163.45万
  • 项目类别:
Realization of Optical Cell-based Reporters for in vivo Detection of Neuropeptides
用于神经肽体内检测的基于光学细胞的报告基因的实现
  • 批准号:
    9213616
  • 财政年份:
    2016
  • 资助金额:
    $ 163.45万
  • 项目类别:

相似海外基金

Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
  • 批准号:
    EP/Z000882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 163.45万
  • 项目类别:
    Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
  • 批准号:
    BB/Y513908/1
  • 财政年份:
    2024
  • 资助金额:
    $ 163.45万
  • 项目类别:
    Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
  • 批准号:
    23K11917
  • 财政年份:
    2023
  • 资助金额:
    $ 163.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
  • 批准号:
    10555809
  • 财政年份:
    2023
  • 资助金额:
    $ 163.45万
  • 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
  • 批准号:
    2825967
  • 财政年份:
    2023
  • 资助金额:
    $ 163.45万
  • 项目类别:
    Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
  • 批准号:
    BB/X013227/1
  • 财政年份:
    2023
  • 资助金额:
    $ 163.45万
  • 项目类别:
    Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
  • 批准号:
    2235348
  • 财政年份:
    2023
  • 资助金额:
    $ 163.45万
  • 项目类别:
    Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
  • 批准号:
    10761060
  • 财政年份:
    2023
  • 资助金额:
    $ 163.45万
  • 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
  • 批准号:
    10751126
  • 财政年份:
    2023
  • 资助金额:
    $ 163.45万
  • 项目类别:
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
  • 批准号:
    BB/X013049/1
  • 财政年份:
    2023
  • 资助金额:
    $ 163.45万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了