Project 1
项目1
基本信息
- 批准号:10649643
- 负责人:
- 金额:$ 86.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-16 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AreaAuditoryAutomobile DrivingBRAIN initiativeBehavioralBloodBlood capillariesBlood flowBrainCerebrumCommunicationCortical ColumnCoupledDataData AnalysesDiameterElectrophysiology (science)Endothelial CellsEnergy-Generating ResourcesEquilibriumFrequenciesFunctional Magnetic Resonance ImagingHomeostasisHumanImageIndividualInvestigationLateralLeadLengthMagnetic Resonance ImagingMeasurementMeasuresMedialMindModalityModelingMusNatureNeuronsOpticsOxygenPathway interactionsPatternPenetrationPeriodicityPhasePhysiologicalPhysiologyPlayRodentRoleSamplingSensorySmooth MuscleStimulusSystemTestingTouch sensationTrainingVasomotorVibrissaeVisionWorkadaptive opticsarterioleexperimental studyin vivo optical imaginglecture notesmodel designmuscle formneuronal excitabilityneuroregulationneurovascularneurovascular couplingoptogeneticsoxygen transportprogramsresponsesegregationsensory stimulusspatiotemporaltheoriestooltwo photon microscopytwo-dimensionaltwo-photonvasomotion
项目摘要
PROJECT SUMMARY/ABSTRACT – PROJECT 1
We propose to leverage our state-of-the-art expertise in vivo optical imaging and data analysis, combined
with behavioral training, electrophysiology, and modeling, to investigate fundamental aspects of the pial
neurovascular circuit in mice. This circuit is composed of a fully connected albeit irregular lattice of pial
arterioles that undergo rhythmic oscillations - in the ~ 0.1 Hz vasomotor band - in isolation. The pial circuit
integrates neuronal activity from neighboring vessels, underlying neurons, and subcortical regions to produce
dynamic patterns of coherent oscillations in arteriolar diameter across the cortical mantel. These patterns
contain regions at slightly different frequencies, i.e., they parcellate, in a manner that partially reflects the
underlying neuronal input. We seek to understand and model this parcellation, which is readily measured with
optical and functional MR imaging, and quantify how it defines brain state.
Aim 1 seeks to formulate an understanding of fundamental physiology of the pial neurovascular circuit. This
includes testing if brain arterioles truly act as non-linear interacting oscillators, so that they entrain and phase
lock rather than passively filter. In Aim 2 we explore the competitive conditions that break locking between
oscillators so that parcellation can occur. These experiments gain from our ability to use sensory stimuli from
different modalities - touch, vision and audition - each of which targets a different brain area. They also gain
from our ability to drive subcortical inputs, particularly those involved in homeostatic brain function, and use
direct optogenetic stimulation where needed. Lastly, these experiments gain from interaction with the
neuromodulatory investigations of Project 2, as subcortical neuromodulation provides both regional and
cortex-wide control of neuronal excitability.
The experimental plan is motivated by the theory of phase-coupled oscillators that dates from Yoshiki
Kuramoto's 1975 Lecture Notes. In this regard, progress on Aims 1 and 2 are strongly interwoven with the
theory effort of Project 4.
Aim 3 will connect the dynamics of the pial neurovascular circuit with the dynamics of the penetrating
arterioles; these vessels source energy substrates to the parenchyma. These experiments, also in rodents,
involve deep imaging of the cerebral mantel with CBV fMRI and adaptive optics two photon imaging. Together
with direct measurements of oxygen transport in Project 2, these data provide input for calculations of oxygen
tension throughout the cortical mantle. This, in turn, provides a means to couple BOLD fMRI and/or CBV fMRI
to pial neurovascular dynamics.
All told, the experimentation and analysis of Project 1 will provide a way forward to infer the state of the
human mind from MR imaging (Project 3).
项目摘要/摘要-项目1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Kleinfeld其他文献
David Kleinfeld的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Kleinfeld', 18)}}的其他基金
A web-based framework for multi-modal visualization and annotation of neuroanatomical data
基于网络的神经解剖数据多模式可视化和注释框架
- 批准号:
10365435 - 财政年份:2021
- 资助金额:
$ 86.76万 - 项目类别:
Direct wavefront sensing and adaptive optics to enable two-photon imaging axons and spines throughout all of cortex
直接波前传感和自适应光学器件可实现整个皮层的双光子成像轴突和脊柱
- 批准号:
10640249 - 财政年份:2019
- 资助金额:
$ 86.76万 - 项目类别:
Direct wavefront sensing and adaptive optics to enable two-photon imaging axons and spines throughout all of cortex
直接波前传感和自适应光学器件可实现整个皮层的双光子成像轴突和脊柱
- 批准号:
10425220 - 财政年份:2019
- 资助金额:
$ 86.76万 - 项目类别:
Direct wavefront sensing and adaptive optics to enable two-photon imaging axons and spines throughout all of cortex
直接波前传感和自适应光学器件可实现整个皮层的双光子成像轴突和脊柱
- 批准号:
10021661 - 财政年份:2019
- 资助金额:
$ 86.76万 - 项目类别:
Imaging the molecular constituents of the brain vasculature and lymphatic connectome
对脑脉管系统和淋巴连接组的分子成分进行成像
- 批准号:
10834499 - 财政年份:2019
- 资助金额:
$ 86.76万 - 项目类别:
Realization of Optical Cell-based Reporters for in vivo Detection of Neuropeptides
用于神经肽体内检测的基于光学细胞的报告基因的实现
- 批准号:
9213616 - 财政年份:2016
- 资助金额:
$ 86.76万 - 项目类别:
相似海外基金
In the middle of the swarm: neuromodulation of the auditory function in malaria mosquitoes
在群体中间:疟疾蚊子听觉功能的神经调节
- 批准号:
MR/Y011732/1 - 财政年份:2024
- 资助金额:
$ 86.76万 - 项目类别:
Fellowship
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
- 批准号:
2409652 - 财政年份:2024
- 资助金额:
$ 86.76万 - 项目类别:
Standard Grant
Audiphon (Auditory models for automatic prediction of phonation)
Audiphon(用于自动预测发声的听觉模型)
- 批准号:
24K03872 - 财政年份:2024
- 资助金额:
$ 86.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Impact of Children's Auditory Technology (iCAT)
儿童听觉技术 (iCAT) 的影响
- 批准号:
MR/X035999/1 - 财政年份:2024
- 资助金额:
$ 86.76万 - 项目类别:
Fellowship
The neural underpinnings of speech and nonspeech auditory processing in autism: Implications for language
自闭症患者言语和非言语听觉处理的神经基础:对语言的影响
- 批准号:
10827051 - 财政年份:2024
- 资助金额:
$ 86.76万 - 项目类别:
Uncovering the Functional Effects of Neurotrophins in the Auditory Brainstem
揭示神经营养素对听觉脑干的功能影响
- 批准号:
10823506 - 财政年份:2024
- 资助金额:
$ 86.76万 - 项目类别:
Auditory Cortex Plasticity Following Deafness
耳聋后的听觉皮层可塑性
- 批准号:
478943 - 财政年份:2023
- 资助金额:
$ 86.76万 - 项目类别:
Operating Grants
Optimization of auditory temporal information processing mechanisms through the development of children with cochlear implants
通过人工耳蜗植入儿童的发育优化听觉时间信息处理机制
- 批准号:
23H01063 - 财政年份:2023
- 资助金额:
$ 86.76万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Signal Processing Along the Auditory Pathway: Changes Following Noise Exposure
沿着听觉通路的信号处理:噪声暴露后的变化
- 批准号:
10536262 - 财政年份:2023
- 资助金额:
$ 86.76万 - 项目类别:
In vivo investigation of spontaneous activity in the prehearing mammalian auditory system
哺乳动物听力前听觉系统自发活动的体内研究
- 批准号:
2881096 - 财政年份:2023
- 资助金额:
$ 86.76万 - 项目类别:
Studentship