Structural and proton dynamics of pyridoxal-5’-phosphate dependent enzymes Resubmission (Diversity Supplement)
5-磷酸吡哆醛依赖性酶的结构和质子动力学重新提交(多样性补充)
基本信息
- 批准号:10359304
- 负责人:
- 金额:$ 1.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalActive SitesAlanine RacemaseAmino AcidsAntibioticsAntidiabetic DrugsAntimalarialsAspartate TransaminaseCatalysisCoenzymesComplementCrystallographyDrug DesignDrug ModelingsDrug TargetingEnzyme Inhibitor DrugsEnzyme KineticsEnzymesFamilyFoundationsGlycine HydroxymethyltransferaseGoalsHydrogenIsotopesJointsKineticsKnowledgeLyaseMolecular ComputationsMotionNMR SpectroscopyNeutronsPharmaceutical PreparationsPhenolsPropertyProtein DynamicsProteinsProteomeProtonsPyridoxal PhosphateReactionRelaxationResearchResolutionRoleSpecificityStructureTechniquesTimeTransaminasesTryptophan SynthaseTyrosineVisualizationVitamin B6X-Ray Crystallographybiophysical techniquescofactordesignenzyme mechanismimprovedinsightmolecular dynamicsnew therapeutic targetnovelparent projectpressureprotein structureprotonationsolid state nuclear magnetic resonancevibration
项目摘要
Project Summary
(NO CHANGE IN THE SCOPE OF THE PARENT PROJECT)
PLP-dependent enzymes represent about 2% of the proteome, and a number of them are current or potential
drug targets. There are four major families of pyridoxal-5’-phosphate (PLP)-dependent enzymes, distinguished
by different three-dimensional folds: the aspartate aminotransferase or α-family (Fold I), the tryptophan
synthase or β-family (Fold II), the alanine racemase family (Fold III), and the D-amino acid aminotransferase
family (Fold IV). Using X-ray crystallography, a great deal has been learned about the role of both these
enzymes and cofactor in catalysis. Despite this, there are still critical gaps in our understanding that limit drug
design. The goal of the proposed project is to provide a very detailed understanding of PLP-dependent
enzyme mechanisms by coordinately defining their structures and dynamics from the global to the atomic level.
To accomplish this, we will employ a synergistic combination of biophysical techniques that are sensitive to
different size- and time-scales. These will include joint X-ray/neutron crystallography, solid-state NMR
spectroscopy, molecular dynamics and QM/MM calculations, inelastic neutron scattering, rapid kinetics
techniques, and heavy enzyme kinetic isotope effects. We will focus on four structurally well-characterized
PLP-dependent enzymes, aspartate aminotransferase, serine hydroxymethyltransferase, tyrosine phenol-lyase
and tryptophan synthase, but for which information on protonation and dynamics is lacking. The enzymes are
drug targets (aspartate aminotransferase, serine hydroxymethyltransferase) or serve as models for drug
targets (tryptophan synthase, tyrosine phenol-lyase). These enzymes catalyze diverse reactions, but use the
same cofactor in similar active sites. Thus, we postulate that the reaction specificity must be controlled by a
combination of protein dynamics and selective protonation of reaction intermediates. Joint X-ray/neutron
crystallography will be the foundation of our research, providing an atomic-level structural basis for protein
dynamics and accurate visualization of hydrogen atoms in protein structures at moderate resolutions. The
results of X-ray/neutron crystallography will be combined with novel solid-state NMR crystallography and with
inelastic neutron scattering to characterize the global and local motions of these enzymes at picosecond-to-
microsecond time scales. Pressure-jump relaxation kinetics, and heavy enzyme kinetic isotope effects will
complement and provide dynamic information on domain motion in the picosecond to minute time-scales. It
should be noted that the inelastic neutron scattering, pressure-jump and heavy enzyme kinetics are
complementary techniques in that they all are sensitive to changes in the vibrational motions of the enzyme,
but interrogate at different time scales. All these results will be integrated with molecular computations to
provide an unprecedented complete picture of the dynamic properties of these important enzymes. This
knowledge may allow the design of novel, potent and selective enzyme inhibitors that may provide new drugs
targeted against PLP-dependent enzymes.
项目摘要
(父项目范围不变)
依赖PLP的酶约占蛋白质组的2%,其中许多是现有的或潜在的
毒品目标。依赖吡哆醛-5‘-磷酸(PLP)的酶有四个主要家族,分别是
通过不同的三维折叠:天冬氨酸氨基转移酶或α家族(折叠I),色氨酸
合成酶或β家族(折叠II)、丙氨酸外消旋酶家族(折叠III)和D-氨基酸转氨酶
家庭(文件夹四)。利用X射线结晶学,人们对这两者的作用已经有了很大的了解
催化中的酶和辅因子。尽管如此,在我们对限制药物的理解上仍然存在重大差距
设计。建议项目的目标是提供对PLP依赖的非常详细的理解
通过从全球到原子水平协调定义它们的结构和动力学来研究酶的作用机制。
为了实现这一点,我们将使用对以下生物物理技术敏感的协同组合
不同的大小和时间尺度。这些将包括联合X射线/中子结晶学、固体核磁共振
光谱学、分子动力学和QM/MM计算、非弹性中子散射、快速动力学
技术,以及重酶动力学同位素效应。我们将重点关注四个结构良好的特点
PLP依赖酶,天冬氨酸氨基转移酶,丝氨酸羟甲基转移酶,酪氨酸苯酚裂解酶
和色氨酸合成酶,但缺乏关于质子化和动力学的信息。这些酶是
药物靶点(天冬氨酸氨基转移酶、丝氨酸羟甲基转移酶)或作为药物模型
靶标(色氨酸合成酶、酪氨酸苯酚裂解酶)。这些酶催化不同的反应,但使用
在相似的活性部位有相同的辅因子。因此,我们假设反应的特异性必须由一个
蛋白质动力学和反应中间产物的选择性质子化的结合。联合X射线/中子
结晶学将是我们研究的基础,为蛋白质提供原子级的结构基础
中等分辨率蛋白质结构中氢原子的动力学和精确可视化。这个
X射线/中子结晶学的结果将与新的固体核磁共振结晶学和
用非弹性中子散射来表征这些酶在皮秒到皮秒的全局和局部运动
微秒时间刻度。压力跳跃松弛动力学和重酶动力学同位素效应
补充和提供皮秒到分钟时间尺度中域运动的动态信息。它
值得注意的是,非弹性中子散射、压力跳跃和重酶动力学是
互补的技术,因为它们都对酶的振动运动的变化敏感,
但在不同的时间尺度上审问。所有这些结果都将与分子计算相结合,以
提供了这些重要酶的动态特性的前所未有的完整图景。这
知识可能允许设计新的、有效的和选择性的酶抑制剂,这些酶抑制剂可能提供新药
靶向PLP依赖的酶。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leonard J Mueller其他文献
Leonard J Mueller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leonard J Mueller', 18)}}的其他基金
600 MHz NMR Spectrometer and CPMAS CryoProbe
600 MHz NMR 波谱仪和 CPMAS CryoProbe
- 批准号:
10415784 - 财政年份:2022
- 资助金额:
$ 1.17万 - 项目类别:
NMR crystallography: Imaging active site chemistry and protonation states
NMR 晶体学:对活性位点化学和质子化状态进行成像
- 批准号:
10406831 - 财政年份:2022
- 资助金额:
$ 1.17万 - 项目类别:
NMR crystallography: Imaging active site chemistry and protonation states
NMR 晶体学:对活性位点化学和质子化状态进行成像
- 批准号:
10673987 - 财政年份:2022
- 资助金额:
$ 1.17万 - 项目类别:
NMR crystallography: Imaging active site chemistry and protonation states
NMR 晶体学:对活性位点化学和质子化状态进行成像
- 批准号:
10797740 - 财政年份:2022
- 资助金额:
$ 1.17万 - 项目类别:
Structural and proton dynamics of pyridoxal-5’-phosphate dependent enzymes Resubmission (Equipment Supplement)
5-磷酸吡哆醛依赖性酶的结构和质子动力学重新提交(设备补充)
- 批准号:
10387748 - 财政年份:2020
- 资助金额:
$ 1.17万 - 项目类别:
Chemically-Rich Structure and Dynamics in the Active Site of Tryptophan Synthase
色氨酸合酶活性位点的化学丰富结构和动力学
- 批准号:
8523915 - 财政年份:2011
- 资助金额:
$ 1.17万 - 项目类别:
Chemically-Rich Structure and Dynamics in the Active Site of Tryptophan Synthase
色氨酸合酶活性位点的化学丰富结构和动力学
- 批准号:
8728271 - 财政年份:2011
- 资助金额:
$ 1.17万 - 项目类别:
Chemically-Rich Structure and Dynamics in the Active Site of Tryptophan Synthase
色氨酸合酶活性位点的化学丰富结构和动力学
- 批准号:
9384666 - 财政年份:2011
- 资助金额:
$ 1.17万 - 项目类别:
Chemically-Rich Structure and Dynamics in the Active Site of Tryptophan Synthase
色氨酸合酶活性位点的化学丰富结构和动力学
- 批准号:
8338816 - 财政年份:2011
- 资助金额:
$ 1.17万 - 项目类别:
Chemically-Rich Structure and Dynamics in the Active Site of Tryptophan Synthase
色氨酸合酶活性位点的化学丰富结构和动力学
- 批准号:
8087430 - 财政年份:2011
- 资助金额:
$ 1.17万 - 项目类别:
相似海外基金
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 1.17万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 1.17万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 1.17万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 1.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 1.17万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 1.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 1.17万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 1.17万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 1.17万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual