Sulfide Oxidation and Signaling
硫化物氧化和信号传导
基本信息
- 批准号:10360743
- 负责人:
- 金额:$ 6.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAllosteric RegulationBindingBiochemicalBiogenesisBlood VesselsCatabolismCellsCoupledCrystallizationCystathionine beta-SynthaseCysteineCysteine DesulfhydraseDefectDioxygenasesDiseaseElectron Spin Resonance SpectroscopyElectron TransportEnvironmentEnzymesFailureFoundationsHealthHemeHomeostasisHumanHydrogen SulfideInflammationKineticsMedicalMitochondriaMutationOxidoreductasePathway interactionsPatientsPhysiologicalProteinsQuinonesReactionRegulationResearchResearch SupportS-AdenosylmethionineScheduleScientistSignal TransductionSignaling MoleculeSulfidesSulfurSulfur Metabolism PathwayThiosulfate SulfurtransferaseTrainingWorkmutantneuroregulationoxidationpersulfidespotentiometric titrationsulfite oxidasesulfurtransferase
项目摘要
Hydrogen sulfide (H2S), a signaling molecule that elicits profound physiological effects, is
a product of mammalian sulfur metabolism and is synthesized at relatively high rates. H2S
is biosynthesized by three enzymes in the sulfur network of which two, cystathionine beta-
synthase (CBS) and gamma-cystathionase, reside in the cytoplasmic transsulfuration
pathway while the third, mercaptopyruvate sulfurtransferase, is involved in cysteine
catabolism. Since H2S is highly toxic, cells avoid its build-up by an efficient oxidation
pathway that is housed in mitochondria and coupled to the energy-generating electron
transfer chain. The constituent proteins include sulfide-quinone oxidoreductase, a
persulfide dioxygenase, rhodanese and sulfite oxidase. While our studies on H2S
biogenesis are supported by HL58784, our work on H2S oxidation and signaling are
supported by GM130183. It is becoming increasing clear that the biosynthetic and
catabolic pathways for H2S interact and modulate each other. Therefore, the sulfide
research supported by HL58784, scheduled to expire this year, will be folded into and then
formally included in the competitive renewal of GM130183. In this supplemental project,
the following specific aims will be addressed to elucidate fundamental mechanisms of
regulation of H2S synthesis by CBS in normal and disease states: i) elucidate the steady
state kinetics of linker mutants in CBS in the canonical transsulfuration and non-canonical
H2S-generating reactions, (ii) investigate perturbations in the heme environment by EPR
spectroscopy and potentiometric titrations, (iii) assess the impact of the mutations on
AdoMet-dependent modulation of CO and NO• binding to ferrous heme and on the cellular
flux of sulfur, and (iv) crystallize the linker mutants that appear to be less prone to
aggregation compared to wild-type CBS. The impact of the proposed studies will be
fundamental (i.e. elucidating mechanims of allosteric regulation at the level of CBS and in
the pathway), medical (i.e. understanding the biochemical basis of failure of disease-
causing CBS mutations), and most importantly, training a URM scientist of high promise.
硫化氢(H2S)是一种引起深刻物理作用的信号分子,是
哺乳动物硫代谢的产物,并以相对较高的速率合成。 H2S
由硫网络中的三种酶生物合成,两个酶,两个胱淀粉β-
合成酶(CBS)和伽马囊杆菌酶,驻留在细胞质过性中
途径,而第三个胃丙氨酸硫酸盐硫酸盐转移酶则参与半胱氨酸
分解代谢。由于H2S是剧毒的,因此细胞避免通过有效的氧化堆积。
位于线粒体中并耦合到能量生成电子的途径
转移链。组成蛋白包括硫化物 - 喹酮氧化激酶,A
硫化二氧酶,罗丹尼和亚硫酸盐氧化酶。而我们对H2S的研究
生物发生由HL58784支持,我们在H2S氧化和信号传导方面的工作是
由GM130183支持。越来越清楚的是,生物合成和
H2S的分解代谢途径相互作用并相互调节。因此,硫化物
HL58784支持的研究计划于今年到期,将被折叠为
正式包含在GM130183的竞争更新中。在这个补充项目中,
将解决以下具体目标,以阐明
在正常和疾病状态下,CBS对H2S合成的调节:i)阐明稳定
CBS中连接器突变体的状态动力学在规范的反硫和非典型的动力学中
H2S生成反应,(ii)EPR研究血红素环境中的扰动
光谱和电位测量滴定,(iii)评估突变对
CO和NO的ADOMET依赖性调制•与亚铁血红素结合并在细胞上结合
硫的通量,(iv)结晶的接头突变体似乎不太容易
与野生型CBS相比,聚集。拟议的研究的影响将是
基本(即,在CBS和IN的水平上阐明变构调节的机制
途径),医学(即了解疾病失败的生化基础 -
引起CBS突变),最重要的是,训练了一个高希望的URM科学家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RUMA V BANERJEE其他文献
RUMA V BANERJEE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RUMA V BANERJEE', 18)}}的其他基金
The Sulfur/Glutamate Circuitry in the Neuroimmune System
神经免疫系统中的硫/谷氨酸回路
- 批准号:
7782403 - 财政年份:2009
- 资助金额:
$ 6.95万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
O-GlcNac Modulation of GABAergic Transmission
O-GlcNac 对 GABA 能传输的调节
- 批准号:
10754746 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Muscarinic modulation of RDoC constructs in primate behavior and fronto-striatal circuits
灵长类行为和额纹状体回路中 RDoC 结构的毒蕈碱调节
- 批准号:
10599997 - 财政年份:2022
- 资助金额:
$ 6.95万 - 项目类别:
Mechanisms and dynamics of allosteric function in proteins
蛋白质变构功能的机制和动力学
- 批准号:
10653812 - 财政年份:2022
- 资助金额:
$ 6.95万 - 项目类别:
Rescuing KCC2 Dysfunction in CDKL5 Deficiency Disorder to Restore GABA(A) Receptor-Mediated Hyperpolarization and Seizure Protection.
挽救 CDKL5 缺乏症中的 KCC2 功能障碍,以恢复 GABA(A) 受体介导的超极化和癫痫保护。
- 批准号:
10581661 - 财政年份:2022
- 资助金额:
$ 6.95万 - 项目类别: