Functional Synthetic Models of Cu-dependent Monooxygenases

铜依赖性单加氧酶的功能合成模型

基本信息

  • 批准号:
    10402075
  • 负责人:
  • 金额:
    $ 22.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Project Summary: In this research project, we develop synthetic inorganic copper complexes to understand the fundamental aspects of structure and function in Cu-dependent monooxygenase enzymes. These metalloenzymes contain 1 or 2 Cu ions in their active center and they couple the reduction of O2 with the oxidation of substrates via formation of transient Cun/O2 species. We are particularly interested in studying the reactivity of mononuclear Cu/O2 intermediates since they have been proposed as active oxidants in the hydroxylation of strong C-H bonds in enzymes such as particulate methane monooxygenases (pMMOs) and lytic polysaccharide monooxygenases (LPMOs). Many questions concerning the identity of the active Cu/O2 species remain unanswered, including: i) oxidation state of Cu (CuI vs. CuII vs. CuIII); ii) reduction/protonation state of O2 (O2−,(H)O22−, (H)O2−) and the pKa and redox potentials associated with these Cu/O2 species; iii) mechanism by which the Cu/O2 intermediates carry out C-H hydroxylations (e.g. O-O cleavage mechanism before or after C-H oxidation?; generation of high-valent Cu-oxyl species before substrate hydroxylation?). In this research proposal, we tackle this problem using two different approaches: 1) We utilize ligand scaffolds (L) that contain C-H substrates covalently attached to their structure (substrate- ligands) that permit us to generate and characterize LCu/O2 species and evaluate their reactivity towards intramolecular C-H hydroxylation. Substrate-ligand modifications will permit us to: i) evaluate the ability of the Cu/O2 species to oxidize sp3 C-H bonds and sp2 C-H bonds; ii) control the stereo-electronic properties of the Cu complexes by the use of different ligand donors (i.e. N2, N3, N4) that will lead to the generation of mononuclear and dinuclear LCu/O2 species, and analyze their reactivity towards intramolecular C-H hydroxylation including characterization of reaction intermediates, kinetics and computations; iii) utilize this approach (Cu-directed hydroxylations) to develop synthetic protocols to promote challenging organic transformations such as enantioselective C-H hydroxylations and one-pot synthesis of 1,3-oxazines. 2) We synthesize mononuclear Cu complexes bearing redox-active ligands with tunable H-bonds that stabilize Cu-hydroxo and Cu-oxyl cores. These unusual Cu complexes are able to reach multiple oxidation states via oxidation of the metal and/or ligand scaffold. These high-valent CuO(H) cores will be characterized by various spectroscopic methods and their ability to perform biorelevant intermolecular 2e− C-H hydroxylations will be examined systematically using the Bordwell equation (i.e. species with higher redox potential and higher pKa should be capable of oxidizing stronger C-H bonds), kinetic experiments and analysis of the reactions products derived from hydroxylation (e.g. organic product(s) and oxidation/protonation state of the final Cu complexes). Overall, these studies will contribute to a broader understanding of the biochemical role of Cu ions involved in O2 reduction and biologically relevant oxidations.
项目概要: 在这个研究项目中,我们开发合成无机铜配合物,以了解基本的 铜依赖性单加氧酶的结构和功能方面。这些金属酶含有 1或2个Cu离子在其活性中心,它们耦合O2的还原与底物的氧化, 瞬时Cun/O2物种的形成。我们特别感兴趣的是研究单核细胞的反应性, Cu/O2中间体,因为它们已被提议作为强C-H羟基化的活性氧化剂 酶如颗粒甲烷单加氧酶(pMMO)和溶解性多糖中的键 单加氧酶(LPMO)。关于活性Cu/O2物种的身份仍然存在许多问题 未回答,包括:i)Cu的氧化态(CuI vs. CuII vs. CuIII); ii)O2的还原/质子化态 (O2- 、(H)O22-、(H)O2-)以及与这些Cu/O2物质相关的PKa和氧化还原电位; iii)机制 Cu/O2中间体通过其进行C-H羟基化(例如,O-O裂解机理在C-H羟基化之前或之后 C-H氧化?;在底物羟基化之前产生高价Cu-氧基物质?)。本研究 根据我们的建议,我们采用两种不同的方法来解决这个问题: 1)我们利用配体支架(L),所述配体支架含有共价连接至其结构的C-H底物(底物- 配体),使我们能够产生和表征LCu/O2物种,并评估其对 分子内C-H羟基化。底物-配体修饰将允许我们:i)评估底物-配体修饰的能力。 Cu/O2物种氧化sp3 C-H键和sp2 C-H键; ii)控制化合物的立体电子性质。 通过使用不同的配体供体(即N2、N3、N4),这将导致生成 单核和双核LCu/O2物种,并分析其对分子内C-H的反应性 羟基化,包括反应中间体的表征、动力学和计算; iii)利用该羟基化, 方法(Cu定向羟基化),以开发合成方案,促进具有挑战性的有机 这些方法包括对映体选择性C-H羟基化和1,3-恶嗪的一锅法合成。 2)我们合成单核铜配合物轴承氧化还原活性配体与可调的H-键, Cu-羟基和Cu-氧基核。这些不寻常的Cu络合物能够通过以下方式达到多个氧化态: 金属和/或配体支架的氧化。这些高价CuO(H)核的特征在于各种不同的结构。 光谱方法及其进行生物相关的分子间2e − C-H羟基化的能力将是 使用Bordwell方程(即具有较高氧化还原电位和较高pKa的物质)系统地检查 应该能够氧化更强的C-H键),动力学实验和反应产物的分析 衍生自羟基化(例如有机产物和最终Cu络合物的氧化/质子化状态)。 总的来说,这些研究将有助于更广泛地了解铜离子的生物化学作用, O2还原和生物相关氧化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Isaac Garcia-Bosch其他文献

Isaac Garcia-Bosch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Isaac Garcia-Bosch', 18)}}的其他基金

Functional Synthetic Models of Cu-dependent Monooxygenases
铜依赖性单加氧酶的功能合成模型
  • 批准号:
    10229556
  • 财政年份:
    2020
  • 资助金额:
    $ 22.95万
  • 项目类别:
Functional Synthetic Models of Cu-dependent Monooxygenases
铜依赖性单加氧酶的功能合成模型
  • 批准号:
    10682574
  • 财政年份:
    2020
  • 资助金额:
    $ 22.95万
  • 项目类别:
Bioinspired Copper-Promoted C-H Hydroxylations
仿生铜促进的 C-H 羟基化
  • 批准号:
    9514492
  • 财政年份:
    2018
  • 资助金额:
    $ 22.95万
  • 项目类别:

相似海外基金

Bio-HhOST: Next Generation 3D Tissue Models: Bio-Hybrid Hierarchical Organoid-Synthetic Tissues (Bio-HhOST) Comprised of Live and Artificial Cells.
Bio-HhOST:下一代 3D 组织模型:由活细胞和人造细胞组成的生物混合分层类器官合成组织 (Bio-HhOST)。
  • 批准号:
    10106841
  • 财政年份:
    2024
  • 资助金额:
    $ 22.95万
  • 项目类别:
    EU-Funded
Synthetic Reconstruction of Human Chaperone Networks in Yeast Models of Neurodegeneration
神经退行性酵母模型中人类伴侣网络的综合重建
  • 批准号:
    10591799
  • 财政年份:
    2023
  • 资助金额:
    $ 22.95万
  • 项目类别:
Chemical Cartography via High-Throughput Experimentation: Predictive Models, Catalyst Development, and New Synthetic Methodology
通过高通量实验进行化学制图:预测模型、催化剂开发和新的合成方法
  • 批准号:
    RGPIN-2019-04985
  • 财政年份:
    2022
  • 资助金额:
    $ 22.95万
  • 项目类别:
    Discovery Grants Program - Individual
Revealing the mechanisms of primate face recognition with synthetic stimulus sets optimized to compare computational models
通过优化比较计算模型的合成刺激集揭示灵长类动物面部识别的机制
  • 批准号:
    10524626
  • 财政年份:
    2022
  • 资助金额:
    $ 22.95万
  • 项目类别:
RECODE: Non-invasive cell patterning and monitoring to generate data-guided computational models that inform synthetic gene circuit-guided cartilage development
RECODE:非侵入性细胞图案化和监测,以生成数据引导的计算模型,为合成基因电路引导的软骨发育提供信息
  • 批准号:
    2225568
  • 财政年份:
    2022
  • 资助金额:
    $ 22.95万
  • 项目类别:
    Standard Grant
Synthetic mucins in epithelial models to probe virus-mucin interactions
上皮模型中的合成粘蛋白用于探测病毒-粘蛋白相互作用
  • 批准号:
    10655654
  • 财政年份:
    2022
  • 资助金额:
    $ 22.95万
  • 项目类别:
Chemical Cartography via High-Throughput Experimentation: Predictive Models, Catalyst Development, and New Synthetic Methodology
通过高通量实验进行化学制图:预测模型、催化剂开发和新的合成方法
  • 批准号:
    RGPIN-2019-04985
  • 财政年份:
    2021
  • 资助金额:
    $ 22.95万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Synthetic ‘remote control’ of kidney tissue formation towards large-scale models of congenital disease
职业:通过合成“远程控制”肾组织的形成来构建大规模先天性疾病模型
  • 批准号:
    2047271
  • 财政年份:
    2021
  • 资助金额:
    $ 22.95万
  • 项目类别:
    Continuing Grant
Chemical Cartography via High-Throughput Experimentation: Predictive Models, Catalyst Development, and New Synthetic Methodology
通过高通量实验进行化学制图:预测模型、催化剂开发和新的合成方法
  • 批准号:
    RGPIN-2019-04985
  • 财政年份:
    2020
  • 资助金额:
    $ 22.95万
  • 项目类别:
    Discovery Grants Program - Individual
Functional Synthetic Models of Cu-dependent Monooxygenases
铜依赖性单加氧酶的功能合成模型
  • 批准号:
    10682574
  • 财政年份:
    2020
  • 资助金额:
    $ 22.95万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了